An extension of the rational policy making algorithm to continuous state spaces

Kazuteru Miyazaki, Hajime Kimura, Shigenobu Kobayashi

研究成果: Contribution to journalArticle査読

4 被引用数 (Scopus)

抄録

Reinforcement Learning is a kind of machine learning. We know Profit Sharing, the Rational Policy Making algorithm (RPM), the Penalty Avoiding Rational Policy Making algorithm and PS-r* to guarantee the rationality in a typical class of the Partially Observable Markov Decision Processes. However they cannot treat continuous state spaces. In this paper, we present a solution to adapt them in continuous state spaces. We give RPM a mechanism to treat continuous state spaces in the environment that has the same type of a reward. We show the effectiveness of the proposed method in numerical examples.

本文言語英語
ページ(範囲)332-341
ページ数10
ジャーナルTransactions of the Japanese Society for Artificial Intelligence
22
3
DOI
出版ステータス出版済み - 1 1 2007

All Science Journal Classification (ASJC) codes

  • ソフトウェア
  • 人工知能

フィンガープリント

「An extension of the rational policy making algorithm to continuous state spaces」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル