An improved data structure for left-right maximal generic words problem

研究成果: 著書/レポートタイプへの貢献会議での発言

抜粋

For a set D of documents and a positive integer d, a string w is said to be d-left-right maximal, if (1) w occurs in at least d documents in D, and (2) any proper superstring of w occurs in less than d documents. The left-right-maximal generic words problem is, given a set D of documents, to preprocess D so that for any string p and for any positive integer d, all the superstrings of p that are d-left-right maximal can be answered quickly. In this paper, we present an O(n log m) space data structure (in words) which answers queries in O(|p| + o log log m) time, where n is the total length of documents in D, m is the number of documents in D and o is the number of outputs. Our solution improves the previous one by Nishimoto et al. (PSC 2015), which uses an O(n log n) space data structure answering queries in O(|p| + r · log n + o · log2 n) time, where r is the number of right-extensions q of p occurring in at least d documents such that any proper right extension of q occurs in less than d documents.

元の言語英語
ホスト出版物のタイトル30th International Symposium on Algorithms and Computation, ISAAC 2019
編集者Pinyan Lu, Guochuan Zhang
出版者Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
ISBN(電子版)9783959771306
DOI
出版物ステータス出版済み - 12 2019
イベント30th International Symposium on Algorithms and Computation, ISAAC 2019 - Shanghai, 中国
継続期間: 12 8 201912 11 2019

出版物シリーズ

名前Leibniz International Proceedings in Informatics, LIPIcs
149
ISSN(印刷物)1868-8969

会議

会議30th International Symposium on Algorithms and Computation, ISAAC 2019
中国
Shanghai
期間12/8/1912/11/19

    フィンガープリント

All Science Journal Classification (ASJC) codes

  • Software

これを引用

Fujishige, Y., Nakashima, Y., Inenaga, S., Bannai, H., & Takeda, M. (2019). An improved data structure for left-right maximal generic words problem. : P. Lu, & G. Zhang (版), 30th International Symposium on Algorithms and Computation, ISAAC 2019 [40] (Leibniz International Proceedings in Informatics, LIPIcs; 巻数 149). Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing. https://doi.org/10.4230/LIPIcs.ISAAC.2019.40