An upper bound for the number of different solutions generated by the primal simplex method with any selection rule of entering variables

Tomonari Kitahara, Shinji Mizuno

研究成果: Contribution to journalArticle査読

4 被引用数 (Scopus)

抄録

Recently, Kitahara, and Mizuno derived an upper bound for the number of different solutions generated by the primal simplex method with Dantzig's (the most negative) pivoting rule. In this paper, we obtain an upper bound with any pivoting rule which chooses an entering variable whose reduced cost is negative at each iteration. The upper bound is applied to a linear programming problem with a totally unimodular matrix. We also obtain a similar upper bound for the dual simplex method.

本文言語英語
論文番号1340012
ジャーナルAsia-Pacific Journal of Operational Research
30
3
DOI
出版ステータス出版済み - 6 2013
外部発表はい

All Science Journal Classification (ASJC) codes

  • 経営科学およびオペレーションズ リサーチ

フィンガープリント

「An upper bound for the number of different solutions generated by the primal simplex method with any selection rule of entering variables」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル