Analysis and modeling of naturalness in handwritten characters

Ján Dolinský, Hideyuki Takagi

研究成果: ジャーナルへの寄稿学術誌査読

13 被引用数 (Scopus)


In this paper, we define the naturalness of handwritten characters as being the difference between the strokes of the handwritten characters and the archetypal fonts on which they are based. With this definition, we mathematically analyze the relationship between the font and its naturalness using canonical correlation analysis (CCA), multiple linear regression analysis, feedforward neural networks (FFNNs) with sliding windows, and recurrent neural networks (RNNs). This analysis reveals that certain properties of font character strokes do not have a linear relationship with their naturalness. In turn, this suggests that nonlinear techniques should be used to model the naturalness, and in our investigations, we find that an RNN with a recurrent output layer performs the best among four linear and nonlinear models. These results indicate that it is possible to model naturalness, defined in our study as the difference between handwritten and archetypal font characters but more generally as the difference between the behavior of a natural system and a corresponding basic system, and that naturalness learning is a promising approach for generating handwritten characters.

ジャーナルIEEE Transactions on Neural Networks
出版ステータス出版済み - 2009

!!!All Science Journal Classification (ASJC) codes

  • ソフトウェア
  • コンピュータ サイエンスの応用
  • コンピュータ ネットワークおよび通信
  • 人工知能


「Analysis and modeling of naturalness in handwritten characters」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。