Analysis of secondary-factor combinations of landslides using improved association rule algorithms: a case study of Kitakyushu in Japan

Jiaying Li, Wei Dong Wang, Zheng Han, Guangqi Chen

研究成果: Contribution to journalArticle査読

1 被引用数 (Scopus)

抄録

Landslide analysis prevents landslides from threatening resident safety and property, and the predominant method is susceptibility assessment which is cumbersome and time-consuming. The association rule algorithm (ARA) is proposed to mine the correlation between the factors and landslides simply and rapidly. The original ARA cannot reflect the scope of landslides which is non-negligible for landslide analysis and is thus improved to mine the frequent secondary-factor combinations (SFCs). Firstly, eight factors are selected using the out-of-bag error and chi-squared ((Formula presented.)) test. The accuracy of the factor selection is further verified employing landslide susceptibility assessment which is predicted using 30% of study grid data selected randomly as the training data. The improved ARA employs the area of historical landslides to mine the frequent SFCs, and the results are then verified by the frequency ratio and (Formula presented.) test. It is concluded that the frequent SFCs are: (21, 41), (21, 74), (34, 41), (34, 74), (41, 74), (21, 41, 74), and (34, 41, 74), and the area with the SFCs needs special protection. The present study provides a valuable reference for the primary prevention of landslides.

本文言語英語
ページ(範囲)1885-1904
ページ数20
ジャーナルGeomatics, Natural Hazards and Risk
12
1
DOI
出版ステータス出版済み - 2021

All Science Journal Classification (ASJC) codes

  • 環境科学(全般)
  • 地球惑星科学(全般)

フィンガープリント

「Analysis of secondary-factor combinations of landslides using improved association rule algorithms: a case study of Kitakyushu in Japan」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル