Analytics of deep neural network-based background subtraction

研究成果: Contribution to journalArticle査読

27 被引用数 (Scopus)

抄録

Deep neural network-based (DNN-based) background subtraction has demonstrated excellent performance for moving object detection. The DNN-based background subtraction automatically learns the background features from training images and outperforms conventional background modeling based on handcraft features. However, previous works fail to detail why DNNs work well for change detection. This discussion helps to understand the potential of DNNs in background subtraction and to improve DNNs. In this paper, we observe feature maps in all layers of a DNN used in our investigation directly. The DNN provides feature maps with the same resolution as that of the input image. These feature maps help to analyze DNN behaviors because feature maps and the input image can be simultaneously compared. Furthermore, we analyzed important filters for the detection accuracy by removing specific filters from the trained DNN. From the experiments, we found that the DNN consists of subtraction operations in convolutional layers and thresholding operations in bias layers and scene-specific filters are generated to suppress false positives from dynamic backgrounds. In addition, we discuss the characteristics and issues of the DNN based on our observation.

本文言語英語
論文番号78
ジャーナルJournal of Imaging
4
6
DOI
出版ステータス出版済み - 2018

All Science Journal Classification (ASJC) codes

  • 放射線学、核医学およびイメージング
  • コンピュータ ビジョンおよびパターン認識
  • コンピュータ グラフィックスおよびコンピュータ支援設計
  • 電子工学および電気工学

フィンガープリント

「Analytics of deep neural network-based background subtraction」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル