ANALYZING PARTICULATE MATTERS VIA SURFACTANT-ASSISTED MICROFLUIDIC IONIC CURRENT SENSING WITH MACHINE LEARNING-DRIVEN IDENTIFICATION

Keiko Fujino, Taisuke Shimada, Takao Yasui, Kazuki Nagashima, Takashi Yanagida, Noritada Kaji, Yoshinobu Baba

研究成果: 書籍/レポート タイプへの寄稿会議への寄与

抄録

Exposures to particulate matters (PMs) are one of important factors for human health, however, their risks are little known due to lacks of comprehensive sensing methods that can access their physicochemical properties. Here, we developed a microfluidics-based method to characterize size and compositions of PMs via combining surfactant-assisted single particle detection, presented on MicroTAS 2020 [1], with machine learning (ML)-driven identifications. Both of hydrophilic and hydrophobic particles were sensed and their electrical signals were discriminated with 98% accuracy at the single level. Our method will comprehensively sense real PMs to characterize their physicochemical properties, enabling to understand health risks.

本文言語英語
ホスト出版物のタイトルMicroTAS 2021 - 25th International Conference on Miniaturized Systems for Chemistry and Life Sciences
出版社Chemical and Biological Microsystems Society
ページ1481-1482
ページ数2
ISBN(電子版)9781733419031
出版ステータス出版済み - 2021
イベント25th International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS 2021 - Palm Springs, Virtual, 米国
継続期間: 10月 10 202110月 14 2021

出版物シリーズ

名前MicroTAS 2021 - 25th International Conference on Miniaturized Systems for Chemistry and Life Sciences

会議

会議25th International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS 2021
国/地域米国
CityPalm Springs, Virtual
Period10/10/2110/14/21

!!!All Science Journal Classification (ASJC) codes

  • バイオエンジニアリング
  • 化学工学(その他)

フィンガープリント

「ANALYZING PARTICULATE MATTERS VIA SURFACTANT-ASSISTED MICROFLUIDIC IONIC CURRENT SENSING WITH MACHINE LEARNING-DRIVEN IDENTIFICATION」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル