Anomaly cancellation condition in lattice gauge theory

研究成果: Contribution to journalArticle査読

36 被引用数 (Scopus)

抄録

We study the gauge anomaly A defined on a 4-dimensional infinite lattice while keeping the lattice spacing finite. We assume that (I) A depends smoothly and locally on the gauge potential, (II) A reproduces the gauge anomaly in the continuum theory in the classical continuum limit, and (III) U(1) gauge anomalies have a topological property. It is then shown that the gauge anomaly A can always be removed by local counterterms to all orders in powers of the gauge potential, leaving possible breakings proportional to the anomaly in the continuum theory. This follows from an analysis of nontrivial local solutions to the Wess-Zumino consistency condition in lattice gauge theory. Our result is applicable to the lattice chiral gauge theory based on the Ginsparg-Wilson Dirac operator, when the gauge field is sufficiently weak ∥U(n,μ)-1∥<ε′ , where U(n,μ) is the link variable and ε′ a certain small positive constant.

本文言語英語
ページ(範囲)471-513
ページ数43
ジャーナルNuclear Physics B
585
1-2
DOI
出版ステータス出版済み - 10 2 2000
外部発表はい

All Science Journal Classification (ASJC) codes

  • 核物理学および高エネルギー物理学

フィンガープリント

「Anomaly cancellation condition in lattice gauge theory」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル