Applicability and structural response for bearing system replacement in suspension bridge rehabilitation

Shigenobu Kainuma, Jin Hee Ahn, Young Soo Jeong, Takehiro Imamura, Tetsuo Matsuda

研究成果: Contribution to journalArticle査読

3 被引用数 (Scopus)


Suitable maintenance, rehabilitation, and repair methods for long-span bridges should be decided based on their purposes as evaluated by carrying out close inspection and observation. This study deals with a rehabilitation method, its applicability to a long-span bridge with a fatigue crack in the stinger-bearing connection plate. Replacing line type contact bearing systems with pot bearings was proposed as the rehabilitation method to stop fatigue cracking, reduce local stress of the fatigue-cracked connection plates, and improve the structural behaviors of the main suspension bridge members. Thus, a stringer-bearing connection specimen was fabricated; then, gouging and bracket installation were simulated for replacing a deteriorated bearing system with a new bearing system. From the results of the gouging and bracket-installation test, the applicability of the rehabilitation method for change works was verified. In addition, the structural responses of the loading tests were compared with those of a finite element analysis in terms of changes in bearing conditions. The deformations of the stringer and the end-beam improved, and local stress and displacement in the fatigue-cracked connection plate were reduced owing to the bearing system replacement. Therefore, replacement of the bearing system can improve the stress level and stop further fatigue cracking in fatigue-cracked connection plates of suspension bridges. In addition, these results can provide basic information about the rehabilitation method involving replacing the bearing systems of bridges with line type contact bearings.

ジャーナルJournal of Constructional Steel Research
出版ステータス出版済み - 4 2014

All Science Journal Classification (ASJC) codes

  • 土木構造工学
  • 建築および建設
  • 材料力学
  • 金属および合金


「Applicability and structural response for bearing system replacement in suspension bridge rehabilitation」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。