Application of an artificial neural network in reactor thermohydraulic problem: Prediction of critical heat flux

Guanghui Su, Kenji Fukuda, Dounan Jia, Koji Morita

研究成果: ジャーナルへの寄稿学術誌査読

35 被引用数 (Scopus)

抄録

A new method for predicting Critical Heat Flux (CHF) with the Artificial Neural Network (ANN) method is presented in this paper. The ANNs were trained based on three conditions: type I (inlet or upstream conditions), II (local or CHF point conditions) and III (outlet or downstream conditions). The best condition for predicting CHF is type II, providing an accuracy of ±10%. The effects of main parameters such as pressure, mass flow rate, equilibrium quality and inlet subcooling on CHF were analyzed using the ANN. Critical heat flux under oscillation flow conditions was also predicted.

本文言語英語
ページ(範囲)564-571
ページ数8
ジャーナルjournal of nuclear science and technology
39
5
DOI
出版ステータス出版済み - 1月 1 2002

!!!All Science Journal Classification (ASJC) codes

  • 核物理学および高エネルギー物理学
  • 原子力エネルギーおよび原子力工学

フィンガープリント

「Application of an artificial neural network in reactor thermohydraulic problem: Prediction of critical heat flux」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル