Application of efficient algorithm for solving six-dimensional molecular Ornstein-Zernike equation

R. Ishizuka, N. Yoshida

研究成果: ジャーナルへの寄稿学術誌査読

11 被引用数 (Scopus)

抄録

In this article, we propose an efficient algorithm for solving six-dimensional molecular Ornstein-Zernike (MOZ) equation. In this algorithm, the modified direct inversion in iterative subspace, which is known as the fast convergent method for solving the integral equation theory of liquids, is adopted. This method is found to be effective for the convergence of the MOZ equation with a simple initial guess. For the accurate averaging of the correlation functions over the molecular orientations, we use the Lebedev-Laikov quadrature. The appropriate number of grid points for the quadrature is decided by the analysis of the dielectric constant. We also analyze the excess chemical potential of aqueous ions and compare the results of the MOZ with those of the reference interaction site model.

本文言語英語
論文番号114106
ジャーナルJournal of Chemical Physics
136
11
DOI
出版ステータス出版済み - 3月 21 2012

!!!All Science Journal Classification (ASJC) codes

  • 物理学および天文学(全般)
  • 物理化学および理論化学

フィンガープリント

「Application of efficient algorithm for solving six-dimensional molecular Ornstein-Zernike equation」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル