Approximating the longest path length of a stochastic DAG by a normal distribution in linear time

Ei Ando, Toshio Nakata, Masafumi Yamashita

研究成果: ジャーナルへの寄稿学術誌査読

15 被引用数 (Scopus)

抄録

This paper presents a linear time algorithm for approximating, in the sense below, the longest path length of a given directed acyclic graph (DAG), where each edge length is given as a normally distributed random variable. Let F (x) be the distribution function of the longest path length of the DAG. Our algorithm computes the mean and the variance of a normal distribution whose distribution function over(F, ̃) (x) satisfies over(F, ̃) (x) ≤ F (x) as long as F (x) ≥ a, given a constant a (1 / 2 ≤ a < 1). In other words, it computes an upper bound 1 - over(F, ̃) (x) on the tail probability 1 - F (x), provided x ≥ F- 1 (a). To evaluate the accuracy of the approximation of F (x) by over(F, ̃) (x), we first conduct two experiments using a standard benchmark set ITC'99 of logical circuits, since a typical application of the algorithm is the delay analysis of logical circuits. We also perform a worst case analysis to derive an upper bound on the difference over(F, ̃)- 1 (a) - F- 1 (a).

本文言語英語
ページ(範囲)420-438
ページ数19
ジャーナルJournal of Discrete Algorithms
7
4
DOI
出版ステータス出版済み - 12月 2009

!!!All Science Journal Classification (ASJC) codes

  • 理論的コンピュータサイエンス
  • 離散数学と組合せ数学
  • 計算理論と計算数学

フィンガープリント

「Approximating the longest path length of a stochastic DAG by a normal distribution in linear time」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル