### 抜粋

For an integer d ≥ 2, a distance-d independent set of an unweighted graph G = (V,E) is a subset S ⊆ V of vertices such that for any pair of vertices u, v ∈ S, the number of edges in any path between u and v is at least d in G. Given an unweighted graph G, the goal of Maximum Distance-d Independent Set problem (MaxDdIS) is to find a maximum-cardinality distance-d independent set of G. In this paper we focus on MaxD3IS on cubic (3-regular) graphs. For every fixed integer d ≥ 3, MaxDdIS is NP-hard even for planar bipartite graphs of maximum degree three. Furthermore, when d = 3, it is known that there exists no σ-approximation algorithm for MaxD3IS oncubic graphs for constant σ < 1. 00105. On the other hand, the previously best approximation ratio known for MaxD3IS on cubic graphs is 2. In this paper, we improve the approximation ratio into 1.875 for MaxD3IS on cubic graphs.

元の言語 | 英語 |
---|---|

ホスト出版物のタイトル | WALCOM |

ホスト出版物のサブタイトル | Algorithms and Computation - 11th International Conference and Workshops, WALCOM 2017, Proceedings |

編集者 | Md. Saidur Rahman, Hsu-Chun Yen, Sheung-Hung Poon |

出版者 | Springer Verlag |

ページ | 228-240 |

ページ数 | 13 |

ISBN（印刷物） | 9783319539249 |

DOI | |

出版物ステータス | 出版済み - 1 1 2017 |

イベント | 11th International Conference and Workshops on Algorithms and Computation, WALCOM 2017 - Hsinchu, 台湾省、中華民国 継続期間: 3 29 2017 → 3 31 2017 |

### 出版物シリーズ

名前 | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
---|---|

巻 | 10167 LNCS |

ISSN（印刷物） | 0302-9743 |

ISSN（電子版） | 1611-3349 |

### その他

その他 | 11th International Conference and Workshops on Algorithms and Computation, WALCOM 2017 |
---|---|

国 | 台湾省、中華民国 |

市 | Hsinchu |

期間 | 3/29/17 → 3/31/17 |

### フィンガープリント

### All Science Journal Classification (ASJC) codes

- Theoretical Computer Science
- Computer Science(all)

### これを引用

*WALCOM: Algorithms and Computation - 11th International Conference and Workshops, WALCOM 2017, Proceedings*(pp. 228-240). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); 巻数 10167 LNCS). Springer Verlag. https://doi.org/10.1007/978-3-319-53925-6_18