Approximation of optimal two-dimensional association rules for categorical attributes using semidefinite programming

Katsuki Fujisawa, Yukinobu Hamuro, Naoki Katoh, Takeshi Tokuyama, Katsutoshi Yada

研究成果: Chapter in Book/Report/Conference proceedingConference contribution

9 被引用数 (Scopus)

抄録

We consider the problem of finding two-dimensional association rules for categorical attributes. Suppose we have two conditional attributes A and B both of whose domains are categorical, and one binary target attribute whose domain is {“positive”, “negative”}. We want to split the Cartesian product of domains of A and B into two subsets so that a certain objective function is optimized, i.e., we want to find a good segmentation of the domains of A and B. We consider in this paper the objective function that maximizes the confidence under the constraint of the upper bound of the support size. We first prove that the problem is NP-hard, and then propose an approximation algorithm based on semidefinite programming. In order to evaluate the effectiveness and efficiency of the proposed algorithm, we carry out computational ex- periments for problem instances generated by real sales data consisting of attributes whose domain size is a few hundreds at maximum. Approxi- mation ratios of the solutions obtained measured by comparing solutions for semidefinite programming relaxation range from 76% to 95%. It is observed that the performance of generated association rules are signifi- cantly superior to that of one-dimensional rules.

本文言語英語
ホスト出版物のタイトルDiscovery Science - 2nd International Conference, DS 1999, Proceedings
編集者Setsuo Arikawa, Koichi Furukawa
出版社Springer Verlag
ページ148-159
ページ数12
ISBN(印刷版)354066713X, 9783540667131
DOI
出版ステータス出版済み - 1999
外部発表はい
イベント2nd International Conference on Discovery Science, DS 1999 - Tokyo, 日本
継続期間: 12 6 199912 8 1999

出版物シリーズ

名前Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
1721
ISSN(印刷版)0302-9743
ISSN(電子版)1611-3349

その他

その他2nd International Conference on Discovery Science, DS 1999
国/地域日本
CityTokyo
Period12/6/9912/8/99

All Science Journal Classification (ASJC) codes

  • 理論的コンピュータサイエンス
  • コンピュータ サイエンス(全般)

フィンガープリント

「Approximation of optimal two-dimensional association rules for categorical attributes using semidefinite programming」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル