Arsenic removal from contaminated water utilizing novel green composite Chlorella vulgaris and nano zero-valent iron

Mir Shariful Islam, Ibrahim Maamoun, Omar Falyouna, Osama Eljamal, Bidyut Baran Saha

研究成果: ジャーナルへの寄稿学術誌査読

3 被引用数 (Scopus)

抄録

Arsenic waste must be carefully managed because of the adverse effects of arsenic in wastewater on the ecosystem. In the present study, an environmentally friendly novel composite of Chlorella vulgaris microalgae and nano-zero valent iron (NZVI) was employed as an adsorbent to eliminate arsenic from the aqueous environment. Fourier Transform Infrared spectroscopy, X-ray diffraction, and scanning electron microscope images were used to characterize and analyze the CV/NZVI composites. Batch tests using initial arsenic concentrations ranging from 5 to 100 mg/L were conducted to evaluate removal efficiencies. According to kinetic analysis, the best model for fitting the experimental data was the pseudo first-order model, which had the lowest Akaike information criterion (AIC), and Bayesian information criterion (BIC) values of −23.878 and −7.902, respectively. Results alluded that physisorption is the primary mechanism influenced by As-removal by CV/NZVI composite. Due to the negative sign of the enthalpy and Gibbs free energy, the thermodynamic investigation revealed that the adsorption reaction was exothermic and spontaneous. The thermodynamic analysis also affirmed that the arsenic removal process involved primarily physisorption and slight chemisorption phenomena. Meanwhile, 1.5 g/L CV/NZVI dosage achieved 99 % As(V) removal efficiency in synthetic groundwater systems, confirming the high potential of the composite in complex aqueous systems.

本文言語英語
論文番号121005
ジャーナルJournal of Molecular Liquids
370
DOI
出版ステータス出版済み - 1月 15 2023

!!!All Science Journal Classification (ASJC) codes

  • 電子材料、光学材料、および磁性材料
  • 原子分子物理学および光学
  • 凝縮系物理学
  • 分光学
  • 物理化学および理論化学
  • 材料化学

フィンガープリント

「Arsenic removal from contaminated water utilizing novel green composite Chlorella vulgaris and nano zero-valent iron」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル