Asymmetric coexistence: Bidirectional abiotic and biotic effects between goose barnacles and mussels

Takashi Kawai, Mutsunori Tokeshi

研究成果: ジャーナルへの寄稿記事

12 引用 (Scopus)

抄録

1. Species coexistence depends on the net effect of interacting species, representing the sum of multiple interaction components that may act simultaneously and vary independently depending on ambient environmental conditions. Consequently, for a comprehensive understanding of the compound nature of species interactions and coexistence, a mechanistic approach that allows a separate evaluation of each interaction component is required. 2. Two sessile filter-feeders, the goose barnacle Capitulum mitella and the mussel Septifer virgatus, coexist on moderately wave-exposed rocky shores in south-western Japan. In the upper intertidal, Capitulum positively influenced Septifer survivorship and growth through amelioration of thermal stress and of physical disturbance. On the other hand, these species are potential competitors as they have similar body sizes and modes of resource utilization. These opposite processes, facilitation and competition, are based on abiotic characteristics and biotic functions of the two species, respectively. 3. In order to quantify the bidirectional abiotic, biotic and net effects, a series of experimental manipulations was conducted involving the use of living neighbours with both abiotic and biotic effects, and artificial mimics to simulate abiotic effects without biotic effects. 4. Capitulum had strong positive abiotic effects on the mussel survivorship in most experimental periods, while the biotic effect was negligible or weakly negative, suggesting that the net effect of Capitulum on mussel survival was largely attributable to the abiotic effect. In contrast, a significantly negative biotic effect on the mussel growth rate was always present, though this was cancelled out by the larger, positive abiotic effect. In the case of Septifer, its abiotic and biotic effects on the survivorship of goose barnacles were negligible, while those on the growth rate showed temporal variation. 5. With respect to the relationship between species interaction and environmental conditions, the strength of abiotic facilitative effect of Capitulum on mussel survival increased with increasing abiotic stress, while the strength of biotic effect was negligible or weakly negative. As regards the effects of mussels on goose barnacles, our study indicated no obvious relationship. These results point to the importance of decomposing interaction for an accurate, mechanistic understanding of species relations and coexistence.

元の言語英語
ページ(範囲)928-941
ページ数14
ジャーナルJournal of Animal Ecology
75
発行部数4
DOI
出版物ステータス出版済み - 7 1 2006

Fingerprint

Lepadidae
coexistence
mussels
survival rate
Mitella
environmental factors
survivorship
thermal stress
abiotic stress
temporal variation
effect
body size
Japan
environmental conditions
physical disturbance
filter feeder
rocky shore
facilitation

All Science Journal Classification (ASJC) codes

  • Ecology, Evolution, Behavior and Systematics
  • Animal Science and Zoology

これを引用

Asymmetric coexistence : Bidirectional abiotic and biotic effects between goose barnacles and mussels. / Kawai, Takashi; Tokeshi, Mutsunori.

:: Journal of Animal Ecology, 巻 75, 番号 4, 01.07.2006, p. 928-941.

研究成果: ジャーナルへの寄稿記事

@article{bd1ccf725af24b43b023a8913d6726a3,
title = "Asymmetric coexistence: Bidirectional abiotic and biotic effects between goose barnacles and mussels",
abstract = "1. Species coexistence depends on the net effect of interacting species, representing the sum of multiple interaction components that may act simultaneously and vary independently depending on ambient environmental conditions. Consequently, for a comprehensive understanding of the compound nature of species interactions and coexistence, a mechanistic approach that allows a separate evaluation of each interaction component is required. 2. Two sessile filter-feeders, the goose barnacle Capitulum mitella and the mussel Septifer virgatus, coexist on moderately wave-exposed rocky shores in south-western Japan. In the upper intertidal, Capitulum positively influenced Septifer survivorship and growth through amelioration of thermal stress and of physical disturbance. On the other hand, these species are potential competitors as they have similar body sizes and modes of resource utilization. These opposite processes, facilitation and competition, are based on abiotic characteristics and biotic functions of the two species, respectively. 3. In order to quantify the bidirectional abiotic, biotic and net effects, a series of experimental manipulations was conducted involving the use of living neighbours with both abiotic and biotic effects, and artificial mimics to simulate abiotic effects without biotic effects. 4. Capitulum had strong positive abiotic effects on the mussel survivorship in most experimental periods, while the biotic effect was negligible or weakly negative, suggesting that the net effect of Capitulum on mussel survival was largely attributable to the abiotic effect. In contrast, a significantly negative biotic effect on the mussel growth rate was always present, though this was cancelled out by the larger, positive abiotic effect. In the case of Septifer, its abiotic and biotic effects on the survivorship of goose barnacles were negligible, while those on the growth rate showed temporal variation. 5. With respect to the relationship between species interaction and environmental conditions, the strength of abiotic facilitative effect of Capitulum on mussel survival increased with increasing abiotic stress, while the strength of biotic effect was negligible or weakly negative. As regards the effects of mussels on goose barnacles, our study indicated no obvious relationship. These results point to the importance of decomposing interaction for an accurate, mechanistic understanding of species relations and coexistence.",
author = "Takashi Kawai and Mutsunori Tokeshi",
year = "2006",
month = "7",
day = "1",
doi = "10.1111/j.1365-2656.2006.01111.x",
language = "English",
volume = "75",
pages = "928--941",
journal = "Journal of Animal Ecology",
issn = "0021-8790",
publisher = "Wiley-Blackwell",
number = "4",

}

TY - JOUR

T1 - Asymmetric coexistence

T2 - Bidirectional abiotic and biotic effects between goose barnacles and mussels

AU - Kawai, Takashi

AU - Tokeshi, Mutsunori

PY - 2006/7/1

Y1 - 2006/7/1

N2 - 1. Species coexistence depends on the net effect of interacting species, representing the sum of multiple interaction components that may act simultaneously and vary independently depending on ambient environmental conditions. Consequently, for a comprehensive understanding of the compound nature of species interactions and coexistence, a mechanistic approach that allows a separate evaluation of each interaction component is required. 2. Two sessile filter-feeders, the goose barnacle Capitulum mitella and the mussel Septifer virgatus, coexist on moderately wave-exposed rocky shores in south-western Japan. In the upper intertidal, Capitulum positively influenced Septifer survivorship and growth through amelioration of thermal stress and of physical disturbance. On the other hand, these species are potential competitors as they have similar body sizes and modes of resource utilization. These opposite processes, facilitation and competition, are based on abiotic characteristics and biotic functions of the two species, respectively. 3. In order to quantify the bidirectional abiotic, biotic and net effects, a series of experimental manipulations was conducted involving the use of living neighbours with both abiotic and biotic effects, and artificial mimics to simulate abiotic effects without biotic effects. 4. Capitulum had strong positive abiotic effects on the mussel survivorship in most experimental periods, while the biotic effect was negligible or weakly negative, suggesting that the net effect of Capitulum on mussel survival was largely attributable to the abiotic effect. In contrast, a significantly negative biotic effect on the mussel growth rate was always present, though this was cancelled out by the larger, positive abiotic effect. In the case of Septifer, its abiotic and biotic effects on the survivorship of goose barnacles were negligible, while those on the growth rate showed temporal variation. 5. With respect to the relationship between species interaction and environmental conditions, the strength of abiotic facilitative effect of Capitulum on mussel survival increased with increasing abiotic stress, while the strength of biotic effect was negligible or weakly negative. As regards the effects of mussels on goose barnacles, our study indicated no obvious relationship. These results point to the importance of decomposing interaction for an accurate, mechanistic understanding of species relations and coexistence.

AB - 1. Species coexistence depends on the net effect of interacting species, representing the sum of multiple interaction components that may act simultaneously and vary independently depending on ambient environmental conditions. Consequently, for a comprehensive understanding of the compound nature of species interactions and coexistence, a mechanistic approach that allows a separate evaluation of each interaction component is required. 2. Two sessile filter-feeders, the goose barnacle Capitulum mitella and the mussel Septifer virgatus, coexist on moderately wave-exposed rocky shores in south-western Japan. In the upper intertidal, Capitulum positively influenced Septifer survivorship and growth through amelioration of thermal stress and of physical disturbance. On the other hand, these species are potential competitors as they have similar body sizes and modes of resource utilization. These opposite processes, facilitation and competition, are based on abiotic characteristics and biotic functions of the two species, respectively. 3. In order to quantify the bidirectional abiotic, biotic and net effects, a series of experimental manipulations was conducted involving the use of living neighbours with both abiotic and biotic effects, and artificial mimics to simulate abiotic effects without biotic effects. 4. Capitulum had strong positive abiotic effects on the mussel survivorship in most experimental periods, while the biotic effect was negligible or weakly negative, suggesting that the net effect of Capitulum on mussel survival was largely attributable to the abiotic effect. In contrast, a significantly negative biotic effect on the mussel growth rate was always present, though this was cancelled out by the larger, positive abiotic effect. In the case of Septifer, its abiotic and biotic effects on the survivorship of goose barnacles were negligible, while those on the growth rate showed temporal variation. 5. With respect to the relationship between species interaction and environmental conditions, the strength of abiotic facilitative effect of Capitulum on mussel survival increased with increasing abiotic stress, while the strength of biotic effect was negligible or weakly negative. As regards the effects of mussels on goose barnacles, our study indicated no obvious relationship. These results point to the importance of decomposing interaction for an accurate, mechanistic understanding of species relations and coexistence.

UR - http://www.scopus.com/inward/record.url?scp=33748477902&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=33748477902&partnerID=8YFLogxK

U2 - 10.1111/j.1365-2656.2006.01111.x

DO - 10.1111/j.1365-2656.2006.01111.x

M3 - Article

C2 - 17009756

AN - SCOPUS:33748477902

VL - 75

SP - 928

EP - 941

JO - Journal of Animal Ecology

JF - Journal of Animal Ecology

SN - 0021-8790

IS - 4

ER -