Asymptotic behavior of solutions to the compressible navier-stokes equation around a time-periodic parallel flow

研究成果: Contribution to journalArticle査読

11 被引用数 (Scopus)

抄録

The global in time existence of strong solutions to the compressible Navier-Stokes equation around time-periodic parallel flows in Rn, n ≥ 2, is established under smallness conditions on Reynolds number, Mach number, and initial perturbations. Furthermore, it is proved for n = 2 that the asymptotic leading part of solutions is given by a solution of the one-dimensional viscous Burgers equation multiplied by the time-periodic function. In the case n ≥ 3 the asymptotic leading part of solutions is given by a solution of the n -1-dimensional heat equation with the convective term multiplied by the time-periodic function.

本文言語英語
ページ(範囲)3514-3574
ページ数61
ジャーナルSIAM Journal on Mathematical Analysis
45
6
DOI
出版ステータス出版済み - 2013

All Science Journal Classification (ASJC) codes

  • 分析
  • 計算数学
  • 応用数学

フィンガープリント

「Asymptotic behavior of solutions to the compressible navier-stokes equation around a time-periodic parallel flow」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル