抄録
We study the initial value problem for the generalized cubic double dispersion equation in one space dimension. We establish a nonlinear approximation result to our global solutions that was obtained in [6]. Moreover, we show that as time tends to infinity, the solution approaches the superposition of nonlinear diffusion waves which are given explicitly in terms of the self-similar solution of the viscous Burgers equation. The proof is based on the semigroup argument combined with the analysis of wave decomposition
本文言語 | 英語 |
---|---|
ページ(範囲) | 969-987 |
ページ数 | 19 |
ジャーナル | Kinetic and Related Models |
巻 | 6 |
号 | 4 |
DOI | |
出版ステータス | 出版済み - 12月 2013 |
!!!All Science Journal Classification (ASJC) codes
- 数値解析
- モデリングとシミュレーション