Asymptotic profile of blow-up solutions of Keller-Segel systems in super-critical cases

Yoshie Sugiyama

研究成果: Contribution to journalArticle

3 引用 (Scopus)

抜粋

We deal with (KS)m below for the super-critical cases of q ≥ m+ 2/N with N ≥ 2, m ≥ 1; q ≥ 2. Based on an ε-regularity theorem in [20], we prove that the set Su of blow-up points of the weak solution u consists of finitely many points if {equation presented}. Moreover, we show that {equation presented} forms a delta-function singularity at the blow-up time. Simultaneously, we give a suficient condition on u such that {equation presented}. Our condition exhibits a scaling invariant class associated with (KS)m.

元の言語英語
ページ(範囲)601-618
ページ数18
ジャーナルDifferential and Integral Equations
23
発行部数7-8
出版物ステータス出版済み - 7 2010
外部発表Yes

All Science Journal Classification (ASJC) codes

  • Analysis
  • Applied Mathematics

フィンガープリント Asymptotic profile of blow-up solutions of Keller-Segel systems in super-critical cases' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用