Automated classification of urinary stones based on microcomputed tomography images using convolutional neural network

Leni Aziyus Fitri, Freddy Haryanto, Hidetaka Arimura, Cui YunHao, Kenta Ninomiya, Risa Nakano, Mohammad Haekal, Yuni Warty, Umar Fauzi

研究成果: Contribution to journalArticle査読

1 被引用数 (Scopus)


Purpose: The classification of urinary stones is important prior to treatment because the treatments depend on three types of urinary stones, i.e., calcium, uric acid, and mixture stones. We have developed an automatic approach for the classification of urinary stones into the three types based on microcomputed tomography (micro-CT) images using a convolutional neural network (CNN). Materials and methods: Thirty urinary stones from different patients were scanned in vitro using micro-CT (pixel size: 14.96 μm; slice thickness: 15 μm); a total of 2,430 images (micro-CT slices) were produced. The slices (227 × 227 pixels) were classified into the three categories based on their energy dispersive X-ray (EDX) spectra obtained via scanning electron microscopy (SEM). The images of urinary stones from each category were divided into three parts; 66%, 17%, and 17% of the dataset were assigned to the training, validation, and test datasets, respectively. The CNN model with 15 layers was assessed based on validation accuracy for the optimization of hyperparameters such as batch size, learning rate, and number of epochs with different optimizers. Then, the model with the optimized hyperparameters was evaluated for the test dataset to obtain classification accuracy and error. Results: The validation accuracy of the developed approach with CNN with optimized hyperparameters was 0.9852. The trained CNN model achieved a test accuracy of 0.9959 with a classification error of 1.2%. Conclusions: The proposed automated CNN-based approach could successfully classify urinary stones into three types, namely calcium, uric acid, and mixture stones, using micro-CT images.

ジャーナルPhysica Medica
出版ステータス出版済み - 10 2020

All Science Journal Classification (ASJC) codes

  • 生物理学
  • 放射線学、核医学およびイメージング
  • 物理学および天文学(全般)


「Automated classification of urinary stones based on microcomputed tomography images using convolutional neural network」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。