Automatic drill wear measurement using colour image processing and artificial neural network

Urs Bopp, Takao Sajima, Hiromichi Onikura

研究成果: Contribution to journalArticle査読

5 被引用数 (Scopus)

抄録

The corner wear of drills is measured automatically in order to predict end of drill life, using hole quality as criterion. Drilling experiments show a strong correlation between the progress of maximum hole diameter and hole surface roughness Rα over drill life. The proposed measurement system uses colour image processing and an artificial neural network. It can detect the corner wear of a drill accurately and predict the surface roughness Rα of the hole to be drilled with mean and maximum errors of 0.32pm and -1.00μm, respectively. The presence of a built-up edge does not influence the measurement results.

本文言語英語
ページ(範囲)287-292
ページ数6
ジャーナルInternational Journal of the Japan Society for Precision Engineering
31
4
出版ステータス出版済み - 12 1997

All Science Journal Classification (ASJC) codes

  • 工学(全般)

フィンガープリント

「Automatic drill wear measurement using colour image processing and artificial neural network」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル