TY - JOUR
T1 - Autophagy gene atg7 regulates albumin transcytosis in renal tubule epithelial cells
AU - Uchida, Yushi
AU - Torisu, Kumiko
AU - Ueki, Kenji
AU - Tsuruya, Kazuhiko
AU - Nakano, Toshiaki
AU - Kitazono, Takanari
N1 - Funding Information:
This work was supported by the Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 26461255).
Publisher Copyright:
© 2021 the American Physiological Society.
PY - 2021/11
Y1 - 2021/11
N2 - Receptor-mediated albumin transport in proximal tubule epithelial cells (PTECs) is important to control proteinuria. Autophagy is an evolutionarily conserved degradation pathway, and its role in intracellular trafficking through interactions with the endocytic pathway has recently been highlighted. Here, we determined whether autophagy regulates albumin transcytosis in PTECs and suppresses albumin-induced cytotoxicity using human proximal tubule (HK-2) cells. The neonatal Fc receptor (FcRn), a receptor for albumin transcytosis, is partially colocalized with autophagosomes. Recycling of FcRn was attenuated, and FcRn accumulated in autophagy-related 7 (ATG7) knockdown HK-2 cells. Colocalization of FcRn with RAB7-positive late endosomes and RAB11-positive recycling endosomes was reduced in ATG7 knockdown cells, which decreased recycling of FcRn to the plasma membrane. In ATG7 or autophagy-related 5 (ATG5) knockdown cells and Atg5 or Atg7 knockout mouse embryonic fibroblasts, albumin transcytosis was significantly reduced and intracellular albumin accumulation was increased. Finally, the release of kidney injury molecule-1, a marker of tubule injury, from ATG7 or ATG5 knockdown cells was increased in response to excess albumin. In conclusion, suppression of autophagy in tubules impairs FcRn transport, thereby inhibiting albumin transcytosis. The resulting accumulation of albumin induces cytotoxicity in tubules.
AB - Receptor-mediated albumin transport in proximal tubule epithelial cells (PTECs) is important to control proteinuria. Autophagy is an evolutionarily conserved degradation pathway, and its role in intracellular trafficking through interactions with the endocytic pathway has recently been highlighted. Here, we determined whether autophagy regulates albumin transcytosis in PTECs and suppresses albumin-induced cytotoxicity using human proximal tubule (HK-2) cells. The neonatal Fc receptor (FcRn), a receptor for albumin transcytosis, is partially colocalized with autophagosomes. Recycling of FcRn was attenuated, and FcRn accumulated in autophagy-related 7 (ATG7) knockdown HK-2 cells. Colocalization of FcRn with RAB7-positive late endosomes and RAB11-positive recycling endosomes was reduced in ATG7 knockdown cells, which decreased recycling of FcRn to the plasma membrane. In ATG7 or autophagy-related 5 (ATG5) knockdown cells and Atg5 or Atg7 knockout mouse embryonic fibroblasts, albumin transcytosis was significantly reduced and intracellular albumin accumulation was increased. Finally, the release of kidney injury molecule-1, a marker of tubule injury, from ATG7 or ATG5 knockdown cells was increased in response to excess albumin. In conclusion, suppression of autophagy in tubules impairs FcRn transport, thereby inhibiting albumin transcytosis. The resulting accumulation of albumin induces cytotoxicity in tubules.
UR - http://www.scopus.com/inward/record.url?scp=85117821082&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85117821082&partnerID=8YFLogxK
U2 - 10.1152/ajprenal.00172.2021
DO - 10.1152/ajprenal.00172.2021
M3 - Article
C2 - 34541900
AN - SCOPUS:85117821082
VL - 321
SP - F572-F586
JO - American Journal of Physiology - Renal Fluid and Electrolyte Physiology
JF - American Journal of Physiology - Renal Fluid and Electrolyte Physiology
SN - 1931-857X
IS - 5
ER -