Background modeling based on bidirectional analysis

研究成果: Contribution to journalArticle査読

27 被引用数 (Scopus)

抄録

Background modeling and subtraction is an essential task in video surveillance applications. Most traditional studies use information observed in past frames to create and update a background model. To adapt to background changes, the background model has been enhanced by introducing various forms of information including spatial consistency and temporal tendency. In this paper, we propose a new framework that leverages information from a future period. Our proposed approach realizes a low-cost and highly accurate background model. The proposed framework is called bidirectional background modeling, and performs background subtraction based on bidirectional analysis, i.e., analysis from past to present and analysis from future to present. Although a result will be output with some delay because information is taken from a future period, our proposed approach improves the accuracy by about 30% if only a 33-millisecond of delay is acceptable. Furthermore, the memory cost can be reduced by about 65% relative to typical background modeling.

本文言語英語
論文番号6619102
ページ(範囲)1979-1986
ページ数8
ジャーナルUnknown Journal
DOI
出版ステータス出版済み - 2013

All Science Journal Classification (ASJC) codes

  • Software
  • Computer Vision and Pattern Recognition

フィンガープリント 「Background modeling based on bidirectional analysis」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル