Background Subtraction Network Module Ensemble for Background Scene Adaptation

Taiki Hamada, Tsubasa Minematsu, Atsushi Simada, Fumiya Okubo, Yuta Taniguchi

研究成果: 書籍/レポート タイプへの寄稿会議への寄与

抄録

Background subtraction networks outperform traditional hand-craft background subtraction methods. The main advantage of background subtraction networks is their ability to automatically learn background features for training scenes. When applying the trained network to new target scenes, adapting the network to the new scenes is crucial. However, few studies have focused on reusing multiple trained models for new target scenes. Considering background changes have several categories, such as illumination changes, a model trained for each background scene can work effectively for the target scene similar to the training scene. In this study, we propose a method to ensemble the module networks trained for each background scene. Experimental results show that the proposed method is significantly more accurate compared with the conventional methods in the target scene by tuning with only a few frames.

本文言語英語
ホスト出版物のタイトルAVSS 2022 - 18th IEEE International Conference on Advanced Video and Signal-Based Surveillance
出版社Institute of Electrical and Electronics Engineers Inc.
ISBN(電子版)9781665463829
DOI
出版ステータス出版済み - 2022
イベント18th IEEE International Conference on Advanced Video and Signal-Based Surveillance, AVSS 2022 - Virtual, Online, スペイン
継続期間: 11月 29 202212月 2 2022

出版物シリーズ

名前AVSS 2022 - 18th IEEE International Conference on Advanced Video and Signal-Based Surveillance

会議

会議18th IEEE International Conference on Advanced Video and Signal-Based Surveillance, AVSS 2022
国/地域スペイン
CityVirtual, Online
Period11/29/2212/2/22

!!!All Science Journal Classification (ASJC) codes

  • 人工知能
  • コンピュータ サイエンスの応用
  • コンピュータ ビジョンおよびパターン認識
  • 情報システムおよび情報管理
  • メディア記述

フィンガープリント

「Background Subtraction Network Module Ensemble for Background Scene Adaptation」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル