Baker-Akhiezer modules on the intersections of shifted theta divisors

Koji Cho, Andrey Mironov, Atsushi Nakayashiki

研究成果: ジャーナルへの寄稿記事

1 引用 (Scopus)

抜粋

The restriction, on the spectral variables, of the Baker-Akhiezer (BA) module of a g- dimensional principally polarized abelian variety with the non-singular theta divisor to an intersection of shifted theta divisors is studied. It is shown that the restriction to a k-dimensional variety becomes a free module over the ring of differential operators in k variables. The remaining g - k derivations dene evolution equations for generators of the BA-module. As a corollary new examples of commutative rings of partial differential operators with matrix coecients and their non-trivial evolution equations are obtained.

元の言語英語
ページ(範囲)553-567
ページ数15
ジャーナルPublications of the Research Institute for Mathematical Sciences
47
発行部数2
DOI
出版物ステータス出版済み - 6 28 2011

All Science Journal Classification (ASJC) codes

  • Mathematics(all)

フィンガープリント Baker-Akhiezer modules on the intersections of shifted theta divisors' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用