Behaviors of oil-soluble molybdenum complexes to form very fine MoS2 particles in vacuum residue

I. Watanabe, M. Otake, M. Yoshimoto, K. Sakanishi, Yozo Korai, I. Mochida

研究成果: ジャーナルへの寄稿学術誌査読

43 被引用数 (Scopus)

抄録

Dispersion and thermal behaviors of oil-soluble Mo-dithiocarbamate (Mo-DTC) and Mo-dithiophosphate (Mo-DTP) as the MoS2 catalyst precursors were studied in petroleum vacuum residue (VR) using FT-Far IR, XRD and TEM. FT-Far IR was proved to detect the Mo complexes and their derived MoS2 in VR without the interference of the complicated organic matrix. Their transformation into MoS2 was identified by detecting the changes in the ligand bonds and crystal structure. These complexes were found to be distributed in asphaltene (or maltene) by fractionation with hexane due to their solubility in the heavy oil, ruling out any chemical interaction of the complex with asphaltene. Mo-DTC was found to be decomposed at 350°C to form definite MoS2 in VR. Mo-DTP started its decomposition around 200°C, and however, no definite formation of MoS2 was confirmed by heating up to 500°C. Dispersion of the complexes in VR and asphalthene was always good as indicated by TEM. Both complexes in VR at 380°C under hydrogenation (HYD) conditions provided more or less MoS2. H2S and reactive sulfur species were assumed to accelerate the transformation of the Mo complex to MoS2 during HYD reaction. Some difficulty of Mo-DTP to be transformed quantitatively into definite MoS2 in VR may explain its poor activity for up-grading VR.

本文言語英語
ページ(範囲)1515-1520
ページ数6
ジャーナルFuel
81
11-12
DOI
出版ステータス出版済み - 7月 8 2002

!!!All Science Journal Classification (ASJC) codes

  • 化学工学(全般)
  • 燃料技術
  • エネルギー工学および電力技術
  • 有機化学

フィンガープリント

「Behaviors of oil-soluble molybdenum complexes to form very fine MoS2 particles in vacuum residue」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル