TY - JOUR
T1 - Benzotropolone moiety in theaflavins is responsible for inhibiting peptide-transport and activating AMP-activated protein kinase in Caco-2 cells
AU - Park, Ha Young
AU - Kunitake, Yuri
AU - Matsui, Toshiro
N1 - Publisher Copyright:
© 2013 Functional Food Institute. All rights reserved.
PY - 2013/5
Y1 - 2013/5
N2 - Objective: In the small intestine, peptide transporter 1 (PEPT1) plays a role in the transport of di- and tri-peptides. Recently, we found that theaflavins (TFs), dimeric catechins, inhibited the transport of di-peptides across Caco-2 monolayers by suppressing the expression of PEPT1 through AMP-activated protein kinase (AMPK) activation. In this study, we investigated the structural requirement of theaflavins for the effect, and the mechanism(s) underling theaflavin-induced AMPK activation. Methods: Theaflavin-3'-O-gallate (TF3'G) was used for this study, since it possessed the most potent inhibition power for peptide-transport among theaflavins. Absorption ability was measured with Caco-2 cell monolayers treated with or without 20 μM sample (TF3'G or its related compounds) in an Ussing Chamber. The amount of Gly-Sar (a model of PEPT1-transporing peptide) transport at fixed time-points to 60 min was determined by fluorescent naphthalene-2,3-dicarboxaldehyde-derivatized assay (Ex/Em: 405 nm/460 nm). The apparent permeability coefficient (Papp) was used to evaluate the permeability. Expression of PEPT1 protein in Caco-2 cells treated with or without 20 μM TF3'G in the presence or absence of inhibitor (10 μM compound C as AMPK inhibitor or 25 μM STO-609 as CaMKK inhibitor) was evaluated by Western blot. Results: The Papp value of Gly-Sar significantly (P < 0.05) decreased in 20 μM purprogallin-treated Caco-2 cells as well as in TF3'G-treated cells, together with the reduction of PEPT1 expression, while their monomeric catechins did not show any Papp reduction. In TF3'Gtreated Caco-2 cells, the recovery of the reduced PEPT1 expression was found by 10 μM compound C, but not STO-609. Conclusion: The study demonstrated that the benzotropolone moiety in theaflavins was a crucial structural requirement for exerting the inhibition of intestinal peptide-transport, and the suppression of PEPT1 expression by theaflavins would be caused by activating LKB1/AMPK pathway, but not CaMKK/AMPK pathway.
AB - Objective: In the small intestine, peptide transporter 1 (PEPT1) plays a role in the transport of di- and tri-peptides. Recently, we found that theaflavins (TFs), dimeric catechins, inhibited the transport of di-peptides across Caco-2 monolayers by suppressing the expression of PEPT1 through AMP-activated protein kinase (AMPK) activation. In this study, we investigated the structural requirement of theaflavins for the effect, and the mechanism(s) underling theaflavin-induced AMPK activation. Methods: Theaflavin-3'-O-gallate (TF3'G) was used for this study, since it possessed the most potent inhibition power for peptide-transport among theaflavins. Absorption ability was measured with Caco-2 cell monolayers treated with or without 20 μM sample (TF3'G or its related compounds) in an Ussing Chamber. The amount of Gly-Sar (a model of PEPT1-transporing peptide) transport at fixed time-points to 60 min was determined by fluorescent naphthalene-2,3-dicarboxaldehyde-derivatized assay (Ex/Em: 405 nm/460 nm). The apparent permeability coefficient (Papp) was used to evaluate the permeability. Expression of PEPT1 protein in Caco-2 cells treated with or without 20 μM TF3'G in the presence or absence of inhibitor (10 μM compound C as AMPK inhibitor or 25 μM STO-609 as CaMKK inhibitor) was evaluated by Western blot. Results: The Papp value of Gly-Sar significantly (P < 0.05) decreased in 20 μM purprogallin-treated Caco-2 cells as well as in TF3'G-treated cells, together with the reduction of PEPT1 expression, while their monomeric catechins did not show any Papp reduction. In TF3'Gtreated Caco-2 cells, the recovery of the reduced PEPT1 expression was found by 10 μM compound C, but not STO-609. Conclusion: The study demonstrated that the benzotropolone moiety in theaflavins was a crucial structural requirement for exerting the inhibition of intestinal peptide-transport, and the suppression of PEPT1 expression by theaflavins would be caused by activating LKB1/AMPK pathway, but not CaMKK/AMPK pathway.
UR - http://www.scopus.com/inward/record.url?scp=84924627460&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84924627460&partnerID=8YFLogxK
U2 - 10.31989/ffhd.v3i5.60
DO - 10.31989/ffhd.v3i5.60
M3 - Article
AN - SCOPUS:84924627460
SN - 2378-7007
VL - 3
SP - 111
EP - 121
JO - Functional Foods in Health and Disease
JF - Functional Foods in Health and Disease
IS - 5
ER -