Bilirubin reduces visceral obesity and insulin resistance by suppression of inflammatory cytokines

Ryoko Takei, Tomoaki Inoue, Noriyuki Sonoda, Motoyuki Kohjima, Misato Okamoto, Ryuichi Sakamoto, Toyoshi Inoguchi, Yoshihiro Ogawa

研究成果: ジャーナルへの寄稿記事

1 引用 (Scopus)

抄録

Objective Although previous studies have reported a negative relationship between serum bilirubin concentration and the development of diabetes mellitus (DM), the relationship between bilirubin and insulin resistance has not been thoroughly assessed. This study was designed to determine the relationships between bilirubin, body fat distribution, and adipose tissue inflammation in patients with type 2 DM and the effect of bilirubin in an obese animal model. Method Body fat distribution was measured using an abdominal dual bioelectrical impedance analyzer in patients with type 2 DM. We also measured glycemic control, lipid profile, serum bilirubin concentration and other clinical characteristics, and determined their relationships with body fat distribution. In the animal study, biliverdin (20 mg/kg daily) was orally administered to high-fat diet (HFD)-induced obese (DIO) mice for 2 weeks, after which intraperitoneal insulin tolerance testing was performed. Then, adipocyte area, adipocytokine expression, and macrophage polarization were evaluated in epididymal adipose tissues. Results In the clinical study, univariate analysis showed that a lower bilirubin concentration was significantly correlated with higher body mass index, waist circumference, triglyceride, uric acid, creatinine, visceral fat area and lower HDL-C. In multivariate analyses, bilirubin concentration significantly correlated with diastolic blood pressure, creatinine, and visceral fat area. However, there was no association between bilirubin concentration and subcutaneous fat area. In the animal study, DIO mice treated with biliverdin had smaller adipocytes than untreated DIO mice and biliverdin improved HFD-induced insulin resistance. Biliverdin treatment reversed the higher gene expression of Cd11c, encoding an M1 macrophage marker, and Tnfa, encoding the proinflammatory cytokine tumor necrosis factor-α, in the adipose tissues of DIO mice. These data suggest biliverdin administration alleviates insulin resistance by ameliorating inflammation and the dysregulation of adipocytokine expression in adipose tissues of DIO mice. Conclusions Bilirubin may protect against insulin resistance by ameliorating visceral obesity and adipose tissue inflammation.

元の言語英語
記事番号e0223302
ジャーナルPloS one
14
発行部数10
DOI
出版物ステータス出版済み - 1 1 2019

Fingerprint

Abdominal Obesity
bilirubin
Bilirubin
insulin resistance
Insulin Resistance
obesity
cytokines
Biliverdine
Obese Mice
Insulin
Cytokines
Fats
adipose tissue
Body Fat Distribution
body fat distribution
Intra-Abdominal Fat
Tissue
Adipose Tissue
Medical problems
mice

All Science Journal Classification (ASJC) codes

  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)
  • General

これを引用

Bilirubin reduces visceral obesity and insulin resistance by suppression of inflammatory cytokines. / Takei, Ryoko; Inoue, Tomoaki; Sonoda, Noriyuki; Kohjima, Motoyuki; Okamoto, Misato; Sakamoto, Ryuichi; Inoguchi, Toyoshi; Ogawa, Yoshihiro.

:: PloS one, 巻 14, 番号 10, e0223302, 01.01.2019.

研究成果: ジャーナルへの寄稿記事

@article{ad62392e6f784a47b3256a7cc1485cd8,
title = "Bilirubin reduces visceral obesity and insulin resistance by suppression of inflammatory cytokines",
abstract = "Objective Although previous studies have reported a negative relationship between serum bilirubin concentration and the development of diabetes mellitus (DM), the relationship between bilirubin and insulin resistance has not been thoroughly assessed. This study was designed to determine the relationships between bilirubin, body fat distribution, and adipose tissue inflammation in patients with type 2 DM and the effect of bilirubin in an obese animal model. Method Body fat distribution was measured using an abdominal dual bioelectrical impedance analyzer in patients with type 2 DM. We also measured glycemic control, lipid profile, serum bilirubin concentration and other clinical characteristics, and determined their relationships with body fat distribution. In the animal study, biliverdin (20 mg/kg daily) was orally administered to high-fat diet (HFD)-induced obese (DIO) mice for 2 weeks, after which intraperitoneal insulin tolerance testing was performed. Then, adipocyte area, adipocytokine expression, and macrophage polarization were evaluated in epididymal adipose tissues. Results In the clinical study, univariate analysis showed that a lower bilirubin concentration was significantly correlated with higher body mass index, waist circumference, triglyceride, uric acid, creatinine, visceral fat area and lower HDL-C. In multivariate analyses, bilirubin concentration significantly correlated with diastolic blood pressure, creatinine, and visceral fat area. However, there was no association between bilirubin concentration and subcutaneous fat area. In the animal study, DIO mice treated with biliverdin had smaller adipocytes than untreated DIO mice and biliverdin improved HFD-induced insulin resistance. Biliverdin treatment reversed the higher gene expression of Cd11c, encoding an M1 macrophage marker, and Tnfa, encoding the proinflammatory cytokine tumor necrosis factor-α, in the adipose tissues of DIO mice. These data suggest biliverdin administration alleviates insulin resistance by ameliorating inflammation and the dysregulation of adipocytokine expression in adipose tissues of DIO mice. Conclusions Bilirubin may protect against insulin resistance by ameliorating visceral obesity and adipose tissue inflammation.",
author = "Ryoko Takei and Tomoaki Inoue and Noriyuki Sonoda and Motoyuki Kohjima and Misato Okamoto and Ryuichi Sakamoto and Toyoshi Inoguchi and Yoshihiro Ogawa",
year = "2019",
month = "1",
day = "1",
doi = "10.1371/journal.pone.0223302",
language = "English",
volume = "14",
journal = "PLoS One",
issn = "1932-6203",
publisher = "Public Library of Science",
number = "10",

}

TY - JOUR

T1 - Bilirubin reduces visceral obesity and insulin resistance by suppression of inflammatory cytokines

AU - Takei, Ryoko

AU - Inoue, Tomoaki

AU - Sonoda, Noriyuki

AU - Kohjima, Motoyuki

AU - Okamoto, Misato

AU - Sakamoto, Ryuichi

AU - Inoguchi, Toyoshi

AU - Ogawa, Yoshihiro

PY - 2019/1/1

Y1 - 2019/1/1

N2 - Objective Although previous studies have reported a negative relationship between serum bilirubin concentration and the development of diabetes mellitus (DM), the relationship between bilirubin and insulin resistance has not been thoroughly assessed. This study was designed to determine the relationships between bilirubin, body fat distribution, and adipose tissue inflammation in patients with type 2 DM and the effect of bilirubin in an obese animal model. Method Body fat distribution was measured using an abdominal dual bioelectrical impedance analyzer in patients with type 2 DM. We also measured glycemic control, lipid profile, serum bilirubin concentration and other clinical characteristics, and determined their relationships with body fat distribution. In the animal study, biliverdin (20 mg/kg daily) was orally administered to high-fat diet (HFD)-induced obese (DIO) mice for 2 weeks, after which intraperitoneal insulin tolerance testing was performed. Then, adipocyte area, adipocytokine expression, and macrophage polarization were evaluated in epididymal adipose tissues. Results In the clinical study, univariate analysis showed that a lower bilirubin concentration was significantly correlated with higher body mass index, waist circumference, triglyceride, uric acid, creatinine, visceral fat area and lower HDL-C. In multivariate analyses, bilirubin concentration significantly correlated with diastolic blood pressure, creatinine, and visceral fat area. However, there was no association between bilirubin concentration and subcutaneous fat area. In the animal study, DIO mice treated with biliverdin had smaller adipocytes than untreated DIO mice and biliverdin improved HFD-induced insulin resistance. Biliverdin treatment reversed the higher gene expression of Cd11c, encoding an M1 macrophage marker, and Tnfa, encoding the proinflammatory cytokine tumor necrosis factor-α, in the adipose tissues of DIO mice. These data suggest biliverdin administration alleviates insulin resistance by ameliorating inflammation and the dysregulation of adipocytokine expression in adipose tissues of DIO mice. Conclusions Bilirubin may protect against insulin resistance by ameliorating visceral obesity and adipose tissue inflammation.

AB - Objective Although previous studies have reported a negative relationship between serum bilirubin concentration and the development of diabetes mellitus (DM), the relationship between bilirubin and insulin resistance has not been thoroughly assessed. This study was designed to determine the relationships between bilirubin, body fat distribution, and adipose tissue inflammation in patients with type 2 DM and the effect of bilirubin in an obese animal model. Method Body fat distribution was measured using an abdominal dual bioelectrical impedance analyzer in patients with type 2 DM. We also measured glycemic control, lipid profile, serum bilirubin concentration and other clinical characteristics, and determined their relationships with body fat distribution. In the animal study, biliverdin (20 mg/kg daily) was orally administered to high-fat diet (HFD)-induced obese (DIO) mice for 2 weeks, after which intraperitoneal insulin tolerance testing was performed. Then, adipocyte area, adipocytokine expression, and macrophage polarization were evaluated in epididymal adipose tissues. Results In the clinical study, univariate analysis showed that a lower bilirubin concentration was significantly correlated with higher body mass index, waist circumference, triglyceride, uric acid, creatinine, visceral fat area and lower HDL-C. In multivariate analyses, bilirubin concentration significantly correlated with diastolic blood pressure, creatinine, and visceral fat area. However, there was no association between bilirubin concentration and subcutaneous fat area. In the animal study, DIO mice treated with biliverdin had smaller adipocytes than untreated DIO mice and biliverdin improved HFD-induced insulin resistance. Biliverdin treatment reversed the higher gene expression of Cd11c, encoding an M1 macrophage marker, and Tnfa, encoding the proinflammatory cytokine tumor necrosis factor-α, in the adipose tissues of DIO mice. These data suggest biliverdin administration alleviates insulin resistance by ameliorating inflammation and the dysregulation of adipocytokine expression in adipose tissues of DIO mice. Conclusions Bilirubin may protect against insulin resistance by ameliorating visceral obesity and adipose tissue inflammation.

UR - http://www.scopus.com/inward/record.url?scp=85072801461&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85072801461&partnerID=8YFLogxK

U2 - 10.1371/journal.pone.0223302

DO - 10.1371/journal.pone.0223302

M3 - Article

C2 - 31577826

AN - SCOPUS:85072801461

VL - 14

JO - PLoS One

JF - PLoS One

SN - 1932-6203

IS - 10

M1 - e0223302

ER -