抄録
The reverse water-gas shift (RWGS) reaction is an important reaction from the viewpoint of converting CO2into CO as an important raw material compound. As the RWGS reaction is a mildly endothermic and competitive reaction with CO2methanation, it is important to improve the activity at low temperatures. Here, we report PtW nanoparticles (NPs) supported on γ-Al2O3(PtW NPs/Al2O3) in which Pt and W were randomly mixed for obtaining a highly active and selective catalyst for the RWGS. At low temperatures of 200 and 300 °C, PtW NPs/Al2O3exhibited 16- and 17-times higher activity than Pt/Al2O3, one of the most promising catalysts. The enhanced activity of PtW NPs originated from alloying Pt with W, which contributes to the sintering resistance of Pt NPs, and promotion of CO2adsorption and CO desorption on the catalyst. Furthermore, PtW NPs/Al2O3exhibited high durability and excellent catalytic performance.
本文言語 | 英語 |
---|---|
ページ(範囲) | 15613-15617 |
ページ数 | 5 |
ジャーナル | Journal of Materials Chemistry A |
巻 | 9 |
号 | 28 |
DOI | |
出版ステータス | 出版済み - 7月 28 2021 |
!!!All Science Journal Classification (ASJC) codes
- 化学 (全般)
- 再生可能エネルギー、持続可能性、環境
- 材料科学(全般)