Boundedness of modified multiplicative updates for nonnegative matrix factorization

Jiro Katayama, Norikazu Takahashi, Jun'Ichi Takeuchi

研究成果: Chapter in Book/Report/Conference proceedingConference contribution

3 被引用数 (Scopus)

抄録

There have been proposed various types of multiplicative updates for nonnegative matrix factorization. However, these updates have a serious drawback in common: they are not defined for all pairs of nonnegative matrices. Furthermore, due to this drawback, their global convergence in the sense of Zangwill's theorem cannot be proved theoretically. In this paper, we consider slightly modified versions of various multiplicative update rules, that are defined for all pairs of matrices in the domain, and show that many of them have the boundedness property. This property is a necessary condition for update rules to be globally convergent in the sense of Zangwill's theorem.

本文言語英語
ホスト出版物のタイトル2013 5th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, CAMSAP 2013
ページ252-255
ページ数4
DOI
出版ステータス出版済み - 2013
イベント2013 5th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, CAMSAP 2013 - Saint Martin, フランス
継続期間: 12 15 201312 18 2013

出版物シリーズ

名前2013 5th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, CAMSAP 2013

その他

その他2013 5th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, CAMSAP 2013
Countryフランス
CitySaint Martin
Period12/15/1312/18/13

All Science Journal Classification (ASJC) codes

  • Computer Science Applications

フィンガープリント 「Boundedness of modified multiplicative updates for nonnegative matrix factorization」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル