Bowman-Bradley type theorem for finite multiple zeta values

Shingo Saito, Noriko Wakabayashi

研究成果: Contribution to journalArticle査読

3 被引用数 (Scopus)

抄録

The multiple zeta values are multivariate generalizations of the values of the Riemann zeta function at positive integers. The Bowman-Bradley theorem asserts that the multiple zeta values at the sequences obtained by inserting a fixed number of twos between 3, 1, . . ., 3, 1 add up to a rational multiple of a power of π. We show that an analogous theorem holds in a very strong sense for finite multiple zeta values, which have been investigated by Hoffman and Zhao among others and recently recast by Zagier.

本文言語英語
ページ(範囲)241-251
ページ数11
ジャーナルTohoku Mathematical Journal
68
2
DOI
出版ステータス出版済み - 2016

All Science Journal Classification (ASJC) codes

  • Mathematics(all)

フィンガープリント 「Bowman-Bradley type theorem for finite multiple zeta values」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル