Bowman-bradley type theorem for finite multiple zeta values in A2

Hideki Murahara, Tomokazu Onozuka, Shin Ichiro Seki

研究成果: Contribution to journalArticle査読

抄録

Bowman and Bradley obtained a remarkable formula among multiple zeta values. The formula states that the sum of multiple zeta values for indices which consist of the shuffle of two kinds of the strings {1, 3, …, 1, 3} and {2, …, 2} is a rational multiple of a power of π2. Recently, Saito and Wakabayashi proved that analogous but more general sums of finite multiple zeta values in an adelic ring1 vanish. In this paper, we partially lift Saito-Wakabayashi’s theorem from1 to2. Our result states that a Bowman-Bradley type sum of finite multiple zeta values in2 is a rational multiple of a special element and this is closer to the original Bowman-Bradley theorem.

本文言語英語
ページ(範囲)647-653
ページ数7
ジャーナルOsaka Journal of Mathematics
57
3
出版ステータス出版済み - 2020

All Science Journal Classification (ASJC) codes

  • 数学 (全般)

フィンガープリント

「Bowman-bradley type theorem for finite multiple zeta values in A<sub>2</sub>」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル