Brain-derived neurotrophic factor induces sustained elevation of intracellular Ca2+ in rodent microglia

Yoshito Mizoguchi, Akira Monji, Takahiro Kato, Yoshihiro Seki, Leo Gotoh, Hideki Horikawa, Satoshi O. Suzuki, Toru Iwaki, Miyuki Yonaha, Sadayuki Hashioka, Shigenobu Kanba

研究成果: Contribution to journalArticle査読

53 被引用数 (Scopus)

抄録

Microglia are intrinsic immune cells that release factors, including proinflammatory cytokines, NO, and neurotrophins, following activation after disturbance in the brain. Elevation of intracellular Ca2+ concentration ([Ca2+]i) is important for microglial functions, such as the release of cytokines and NO from activated microglia. There is increasing evidence suggesting that pathophysiology of neuropsychiatric disorders is related to the inflammatory responses mediated by microglia. Brain-derived neurotrophic factor (BDNF) is a neurotrophin well known for its roles in the activation of microglia as well as in pathophysiology and/or treatment of neuropsychiatric disorders. In this study, we observed that BDNF induced a sustained increase in [Ca2+]i through binding with the truncated tropomyosin-related kinase B receptor, resulting in activation of the PLC pathway and store-operated calcium entry in rodent microglial cells. RT-PCR and immunocytochemical techniques revealed that truncated tropomyosinrelated kinase B-T1 receptors were highly expressed in rodent microglial cells. Sustained activation of store-operated calcium entry occurred after brief BDNF application and contributed to the maintenance of sustained [Ca2+]i elevation. Pretreatment with BDNF significantly suppressed the release of NO from activated microglia. Additionally, pretreatment of BDNF suppressed the IFN-γ-induced increase in [Ca2+]i, along with a rise in basal levels of [Ca2+]i in rodent microglial cells. We show direct evidence that rodent microglial cells are able to respond to BDNF, which may be important for the regulation of inflammatory responses, and may also be involved in the pathophysiology and/or the treatment of neuropsychiatric disorders.

本文言語英語
ページ(範囲)7778-7786
ページ数9
ジャーナルJournal of Immunology
183
12
DOI
出版ステータス出版済み - 12 15 2009

All Science Journal Classification (ASJC) codes

  • 免疫アレルギー学
  • 免疫学

フィンガープリント

「Brain-derived neurotrophic factor induces sustained elevation of intracellular Ca<sup>2+</sup> in rodent microglia」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル