Brain-stiffness-mimicking tilapia collagen gel promotes the induction of dorsal cortical neurons from human pluripotent stem cells

Misato Iwashita, Hatsumi Ohta, Takahiro Fujisawa, Minyoung Cho, Makoto Ikeya, Satoru Kidoaki, Yoichi Kosodo

研究成果: ジャーナルへの寄稿学術誌査読

24 被引用数 (Scopus)

抄録

The mechanical properties of the extracellular microenvironment, including its stiffness, play a crucial role in stem cell fate determination. Although previous studies have demonstrated that the developing brain exhibits spatiotemporal diversity in stiffness, it remains unclear how stiffness regulates stem cell fate towards specific neural lineages. Here, we established a culture substrate that reproduces the stiffness of brain tissue using tilapia collagen for in vitro reconstitution assays. By adding crosslinkers, we obtained gels that are similar in stiffness to living brain tissue (150–1500 Pa). We further examined the capability of the gels serving as a substrate for stem cell culture and the effect of stiffness on neural lineage differentiation using human iPS cells. Surprisingly, exposure to gels with a stiffness of approximately 1500 Pa during the early period of neural induction promoted the production of dorsal cortical neurons. These findings suggest that brain-stiffness-mimicking gel has the potential to determine the terminal neural subtype. Taken together, the crosslinked tilapia collagen gel is expected to be useful in various reconstitution assays that can be used to explore the role of stiffness in neurogenesis and neural functions. The enhanced production of dorsal cortical neurons may also provide considerable advantages for neural regenerative applications.

本文言語英語
論文番号3068
ジャーナルScientific reports
9
1
DOI
出版ステータス出版済み - 12月 1 2019

!!!All Science Journal Classification (ASJC) codes

  • 一般

フィンガープリント

「Brain-stiffness-mimicking tilapia collagen gel promotes the induction of dorsal cortical neurons from human pluripotent stem cells」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル