Branching-diffusion model for the formation of distributional patterns in populations

Yoh Iwasa, E. Teramoto

研究成果: ジャーナルへの寄稿学術誌査読

12 被引用数 (Scopus)

抄録

A continuous time branching-diffusion process model is presented to describe the development of spatial distributional patterns of a biological population. In the model each unit moves independently following diffusion processes on a plane, and multiplies or goes extinct at random times. Standard methods for measuring the degree of aggregation used in field ecology are applied to this model population. Kuno's CAindex using quadrat sampling is calculated, and the dependence of the index on time, quadrat size, initial density, and diffusion and branching rules, is discussed. Pielou's α index based on distance measurement is evaluated by the solution of a nonlinear partial differential equation. Both methods show that continuous-time branching-diffusion processes produce a contagious spatial pattern; as in a discrete-time model studied by Iwasa and Teramoto (1977).

本文言語英語
ページ(範囲)109-124
ページ数16
ジャーナルJournal of Mathematical Biology
19
1
DOI
出版ステータス出版済み - 1月 1 1984

!!!All Science Journal Classification (ASJC) codes

  • モデリングとシミュレーション
  • 農業および生物科学(その他)
  • 応用数学

フィンガープリント

「Branching-diffusion model for the formation of distributional patterns in populations」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル