Bulky high-mannose-type N-glycan blocks the taste-modifying activity of miraculin

Keisuke Ito, Taishi Sugawara, Ayako Koizumi, Ken ichiro Nakajima, Akiko Shimizu-Ibuka, Mitsunori Shiroishi, Hidetsugu Asada, Takami Yurugi-Kobayashi, Tatsuro Shimamura, Tomiko Asakura, Katsuyoshi Masuda, Masaji Ishiguro, Takumi Misaka, So Iwata, Takuya Kobayashi, Keiko Abe

研究成果: ジャーナルへの寄稿学術誌査読

17 被引用数 (Scopus)


Background: Miraculin (MCL) is a taste-modifying protein that converts sourness into sweetness. The molecular mechanism underlying the taste-modifying action of MCL is unknown. Methods: Here, a yeast expression system for MCL was constructed to accelerate analysis of its structure-function relationships. The Saccharomyces cerevisiae expression system has advantages as a high-throughput analysis system, but compared to other hosts it is characterized by a relatively low level of recombinant protein expression. To alleviate this weakness, in this study we optimized the codon usage and signal-sequence as the first step. Recombinant MCL (rMCL) was expressed and purified, and the sensory taste was analyzed. Results: As a result, a 2. mg/l yield of rMCL was successfully obtained. Although sensory taste evaluation showed that rMCL was flat in taste under all the pH conditions employed, taste-modifying activity similar to that of native MCL was recovered after deglycosylation. Mutagenetic analysis revealed that the N-glycan attached to Asn42 was bulky in rMCL. Conclusions: The high-mannose-type N-glycan attached in yeast blocks the taste-modifying activity of rMCL. General significance: The bulky N-glycan attached to Asn42 may cause steric hindrance in the interaction between active residues and the sweet taste receptor hT1R2/hT1R3.

ジャーナルBiochimica et Biophysica Acta - General Subjects
出版ステータス出版済み - 9月 2010

All Science Journal Classification (ASJC) codes

  • 生物理学
  • 生化学
  • 分子生物学


「Bulky high-mannose-type N-glycan blocks the taste-modifying activity of miraculin」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。