Calcination effect of borate-bearing hydroxyapatite on the mobility of borate

Keiko Sasaki, Kenta Toshiyuki, Binglin Guo, Keiko Ideta, Yoshikazu Hayashi, Tsuyoshi Hirajima, Jin Miyawaki

研究成果: ジャーナルへの寄稿学術誌査読

5 被引用数 (Scopus)


Discharge from accidental nuclear power plants includes boric acid, which is used as a neutron absorbent in nuclear reactors. Co-precipitation of borate with hydroxyapatite (HAp), using Ca(OH)2, is known to be an effectively fast method for stabilization of borate as well as coexisting radioactive nuclides. To reduce bulky volume of solid residues after co-precipitation, calcination is necessary to investigate the chemical stability of targets. Calcination at 850 °C resulted in the high crystalization of HAp with formation of xCaO·B2O3 as a by-phase in which x increased with a decrease in the borate contents. After calcination, the lattice parameter a of HAp showed a reentrant curve and c showed a convex curve with an increase in borate contents. A dissolution assay revealed that calcination sometimes increases the borate moiety and that the acceptable B contents in HAp are lower than 1.59 mmol/g-calcined HAp. These results imply that during calcination of HAp, some borate is excluded to form the by-phase xCaO·B2O3, which is relatively insoluble in water, but some other fractions might be additionally emitted from the amorphous phase to weakly bind the calcined products.

ジャーナルJournal of Hazardous Materials
出版ステータス出版済み - 2月 15 2018

!!!All Science Journal Classification (ASJC) codes

  • 環境工学
  • 環境化学
  • 廃棄物管理と処理
  • 汚染
  • 健康、毒物学および変異誘発


「Calcination effect of borate-bearing hydroxyapatite on the mobility of borate」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。