抄録
We propose a camera-tracking method by on-line learning of keypoint arrangements in augmented reality applications. As target objects, we deal with intersection maps from GIS and text documents, which are not dealt with by the popular SIFT and SURF descriptors. For keypoint matching by keypoint arrangement, we use locally likely arrangement hashing (LLAH), in which the descriptors of the arrangement in a viewpoint are not invariant to the wide range of viewpoints because the arrangement is changeable with respect to viewpoints. In order to solve this problem, we propose online learning of descriptors using new configurations of keypoints at new viewpoints. The proposed method allows keypoint matching to proceed under new viewpoints. We evaluate the performance and robustness of our tracking method using view changes.
本文言語 | 英語 |
---|---|
ページ(範囲) | 109-117 |
ページ数 | 9 |
ジャーナル | Virtual Reality |
巻 | 15 |
号 | 2-3 |
DOI | |
出版ステータス | 出版済み - 6月 2011 |
外部発表 | はい |
!!!All Science Journal Classification (ASJC) codes
- ソフトウェア
- 人間とコンピュータの相互作用
- コンピュータ グラフィックスおよびコンピュータ支援設計