Carbon nanotube thermal probe using platinum nano hot-film

Koji Takahashi, Jun Hirotani, Satoshi Kai, Tatsuya Ikuta

研究成果: Chapter in Book/Report/Conference proceedingConference contribution

抄録

This paper reports on a thermal probe using a carbon nanotube (CNT) on a platinum hot-film. CNT probe is expected to breakthrough the limitations of the existing ones owing to its unique characteristics but no practical thermal device has been fabricated yet. In order to explore the mechanisms of heating and measuring the smaller region than 10nm, we applied our recently developed sensor coupled with CNT, which consists of a suspended platinum film of 40nm × 500nm × 10micrometer. The principle of this probe as heater and sensor is explained, based on one dimensional heat conduction. Fabrication process using MEMS technique is also introduced, especially for a couple of critical techniques. One is to fabricate the nano sensor on an edge of the sensor substrate. The other is to bond a CNT on the suspended hot-film sensor. A CNT thermal probe using a multi-walled CNT of 70nm diameter and ca. 10 micrometers length is successfully fabricated. Its performances are tested in vacuum environment as to eliminate the presence of in-air conduction effect and water absorption effect around the contact point, which work for heat transport dominantly in atmospheric condition and degrade the spatial resolution. Our CNT probe showed a clear and reliable signal in vacuum and its sensitivity available for nanoscale thermal sensing and heating is confirmed.

本文言語英語
ホスト出版物のタイトルProceedings of the ASME Micro/Nanoscale Heat and Mass Transfer International Conference 2009, MNHMT2009
ページ457-462
ページ数6
2
DOI
出版ステータス出版済み - 2010
イベントASME 2009 Micro/Nanoscale Heat and Mass Transfer International Conference 2009, MNHMT2009 - Shanghai, 中国
継続期間: 12 18 200912 21 2009

その他

その他ASME 2009 Micro/Nanoscale Heat and Mass Transfer International Conference 2009, MNHMT2009
国/地域中国
CityShanghai
Period12/18/0912/21/09

All Science Journal Classification (ASJC) codes

  • 流体および伝熱

フィンガープリント

「Carbon nanotube thermal probe using platinum nano hot-film」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル