Cell Detection in Domain Shift Problem Using Pseudo-Cell-Position Heatmap

Hyeonwoo Cho, Kazuya Nishimura, Kazuhide Watanabe, Ryoma Bise

研究成果: Chapter in Book/Report/Conference proceedingConference contribution

1 被引用数 (Scopus)

抄録

The domain shift problem is an important issue in automatic cell detection. A detection network trained with training data under a specific condition (source domain) may not work well in data under other conditions (target domain). We propose an unsupervised domain adaptation method for cell detection using the pseudo-cell-position heatmap, where a cell centroid becomes a peak with a Gaussian distribution in the map. In the prediction result for the target domain, even if a peak location is correct, the signal distribution around the peak often has a non-Gaussian shape. The pseudo-cell-position heatmap is re-generated using the peak positions in the predicted heatmap to have a clear Gaussian shape. Our method selects confident pseudo-cell-position heatmaps using a Bayesian network and adds them to the training data in the next iteration. The method can incrementally extend the domain from the source domain to the target domain in a semi-supervised manner. In the experiments using 8 combinations of domains, the proposed method outperformed the existing domain adaptation methods.

本文言語英語
ホスト出版物のタイトルMedical Image Computing and Computer Assisted Intervention – MICCAI 2021 - 24th International Conference, Proceedings
編集者Marleen de Bruijne, Philippe C. Cattin, Stéphane Cotin, Nicolas Padoy, Stefanie Speidel, Yefeng Zheng, Caroline Essert
出版社Springer Science and Business Media Deutschland GmbH
ページ384-394
ページ数11
ISBN(印刷版)9783030872366
DOI
出版ステータス出版済み - 2021
イベント24th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2021 - Virtual, Online
継続期間: 9 27 202110 1 2021

出版物シリーズ

名前Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
12908 LNCS
ISSN(印刷版)0302-9743
ISSN(電子版)1611-3349

会議

会議24th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2021
CityVirtual, Online
Period9/27/2110/1/21

All Science Journal Classification (ASJC) codes

  • 理論的コンピュータサイエンス
  • コンピュータ サイエンス(全般)

フィンガープリント

「Cell Detection in Domain Shift Problem Using Pseudo-Cell-Position Heatmap」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル