Cerebral blood flow laterality derived from arterial spin labeling as a biomarker for assessing the disease severity of parkinson's disease

Koji Yamashita, Akio Hiwatashi, Osamu Togao, Kazufumi Kikuchi, Hiroo Yamaguchi, Yuriko Suzuki, Ryotaro Kamei, Ryo Yamasaki, Jun Ichi Kira, Hiroshi Honda

研究成果: ジャーナルへの寄稿記事

3 引用 (Scopus)


Purpose: To evaluate cerebral blood flow (CBF) laterality derived from arterial spin labeling (ASL) in early-stage Parkinson's disease (PD) patients compared with those with advanced stages. Materials and Methods: Thirty-eight patients with PD (21 patients in early stages, 17 patients in advanced stages) were retrospectively studied. The CBF maps derived from 3T ASL data were co-registered to the corresponding 3DT1WI using SPM 12 software. Caudate nucleus (CN), putamen (PT), globus pallidus (GP), and thalamus (TH) were manually traced on the representative axial slices of 3DT1WI. CBF of the CN, PT, GP, and TH was measured using corresponding pixels on the co-registered CBF maps. A laterality index (LI) was calculated as the ratio of the contralateral CBF to primary affected side CBF. Each LI was compared between early and advanced stages of PD using the Mann-Whitney U-test. The LIs were also compared between each stage of PD. Results: In the CN, the LIs were significantly higher in early stages (mean LI ± SD, 95% confidence interval = 1.06 ± 0.14, 1.00–1.13) than in advanced stages (0.94 ± 0.14, 0.87–1.01; P < 0.05). We also observed a tendency toward decreased LIs with disease severity (1.10 ± 0.14, 0.99–1.21 for Hoehn and Yahr stage I; 1.04 ± 0.14, 0.92–1.12 for stage II; 0.96 ± 0.11, 0.89–1.10 for stage III; 0.93 ± 0.17, 0.81–1.05 for stage IV). Conclusion: The evaluation of CBF laterality pattern in the CN using ASL may be useful for assessing the disease severity of PD patients. Level of Evidence: 3. J. MAGN. RESON. IMAGING 2017;45:1821–1826.

ジャーナルJournal of Magnetic Resonance Imaging
出版物ステータス出版済み - 6 2017


All Science Journal Classification (ASJC) codes

  • Radiology Nuclear Medicine and imaging