Characterization and bioactivity of nano-submicro octacalcium phosphate/gelatin composite

Kei Ichiro Miura, Takahisa Anada, Yoshitomo Honda, Yukari Shiwaku, Tadashi Kawai, Seishi Echigo, Tetsu Takahashi, Osamu Suzuki

研究成果: Contribution to journalArticle査読

18 被引用数 (Scopus)

抄録

The present study was designed to investigate the physicochemical and bioactive properties of a nano-submicro sized octacalcium phosphate (OCP)-dispersed gelatin (Gel) composite (nano-submicro OCP/Gel) used as a bone substitute material in various bone defects. Well-grown, synthesized OCP was mechanically ground from 100 to 300 μm-sieved granules to particles that were approximately 500 nm in size. Then, 50 wt% of the nano-submicro OCP was mixed with porcine skin-derived acid extracted gelatin. The mixture was molded and lyophilized and then subjected to dehydrothermal crosslinking. X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy showed that the structure of OCP was retained even after mechanical grinding to a nano-submicro scale level as well as inclusion in the Gel matrix. The bioactivity of nano-submicro OCP/Gel was examined by immersing the composite in simulated body fluid (SBF) for 7 days and by implanting it in rat critical-sized calvaria defects for 8 weeks. The nano-submicro OCP tended to convert to low crystalline hydroxyapatite (HA) in SBF as assessed by XRD. The nano-submicro OCP/Gel exhibited osteoconductivity in vivo, yielding new bone formation that was closely associated with the implanted composite. These results suggest that the nano-submicro OCP/Gel composite exhibits similar osteoconductivity as observed in other OCP-based materials previously reported and could be used as a bone substitute material for repairing various defects in bone.

本文言語英語
ページ(範囲)138-145
ページ数8
ジャーナルApplied Surface Science
282
DOI
出版ステータス出版済み - 10 1 2013
外部発表はい

All Science Journal Classification (ASJC) codes

  • 化学 (全般)
  • 凝縮系物理学
  • 物理学および天文学(全般)
  • 表面および界面
  • 表面、皮膜および薄膜

フィンガープリント

「Characterization and bioactivity of nano-submicro octacalcium phosphate/gelatin composite」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル