Chinese calligraphy recognition system based on convolutional neural network

Wenyi Cui, Kohei Inoue

    研究成果: ジャーナルへの寄稿学術誌査読

    抄録

    This paper presents a Chinese calligraphy recognition system which can ex- tract text from an image of Chinese calligraphy and recognize its style of calligraphy fonts. A multi-label convolutional neural network (CNN) recognition model is created and trained to recognize both textual content and font of single Chinese character at the same time. A large number of calligraphy images of single Chinese character are collected and prepossessed to form a dataset for training the model. Several images of calligraphy works of ancient Chinese calligraphers are used to evaluate the performance of the pro- posed system, and the experimental results showed the capability of the proposed system to recognize Chinese calligraphy.

    本文言語英語
    ページ(範囲)1187-1195
    ページ数9
    ジャーナルICIC Express Letters
    15
    11
    DOI
    出版ステータス出版済み - 11月 2021

    !!!All Science Journal Classification (ASJC) codes

    • 制御およびシステム工学
    • コンピュータ サイエンス(全般)

    フィンガープリント

    「Chinese calligraphy recognition system based on convolutional neural network」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

    引用スタイル