Collapsing of the line bundle mean curvature flow on Kähler surfaces

研究成果: Contribution to journalArticle査読

1 被引用数 (Scopus)

抄録

We study the line bundle mean curvature flow on Kähler surfaces under the hypercritical phase and a certain semipositivity condition. We naturally encounter such a condition when considering the blowup of Kähler surfaces. We show that the flow converges smoothly to a singular solution to the deformed Hermitian–Yang–Mills equation away from a finite number of curves of negative self-intersection on the surface. As an application, we obtain a lower bound of a Kempf–Ness type functional on the space of potential functions satisfying the hypercritical phase condition.

本文言語英語
論文番号27
ジャーナルCalculus of Variations and Partial Differential Equations
60
1
DOI
出版ステータス出版済み - 2 2021

All Science Journal Classification (ASJC) codes

  • 分析
  • 応用数学

フィンガープリント

「Collapsing of the line bundle mean curvature flow on Kähler surfaces」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル