TY - JOUR
T1 - Comparison of the genetic diversity of common wild rice (Oryza rufipogon Griff.) and cultivated rice (O. sativa L.) using RFLP markers
AU - Sun, C. Q.
AU - Wang, X. K.
AU - Li, Z. C.
AU - Yoshimura, Atsushi
AU - Iwata, N.
PY - 2001/2/21
Y1 - 2001/2/21
N2 - Forty fourth single-copy RFLP markers were used to evaluate the genetic diversity of 122 accessions of common wild rice (CWR, Oryza rufipogon Griff.) and 75 entries of cultivated rice (Oryza sativa L.) from more than ten Asian countries. A comparison of the parameters showing genetic diversity, including the percentage of polymorphic loci (P), the average number of alleles per locus (A), the number of genotypes (Ng), the average heterozygosity (Ho) and the average genetic multiplicity (Hs) of CWR and indica and japonica subspecies of cultivated rice from different countries and regions, indicated that CWR from China possesses the highest genetic diversity, followed by CWR from South Asia and Southeast Asia. The genetic diversity of CWR from India is the second highest. Although the average gene diversity (Hs)of the South Asian CWR is higher than that of the Southeast Asian CWR, its percentage of polymorphic loci (P), number of alleles (Na) and number of genotypes (Ng) are all smaller. It was also found that the genetic diversity of cultivated rice is obviously lower than that of CWR. At the 44 loci investigated, the number of polymorphic loci of cultivated rice is only 3/4 that of CWR, while the number of alleles, 60%, and the number of genotypes is about 1/2 that of CWR. Of the two subspecies studied, the genetic diversity of indica is higher than that of japonica. The average heterozygosity of the Chinese CWR is the highest among all the entries studied. The average heterozygosity of CWR is about two-times that of cultivated rice. It is suggested that during the course of evolution from wild rice to cultivated rice, many alleles were lost through natural and human selection, leading to the lower heterozygosity and genetic diversity of the cultivated rice.
AB - Forty fourth single-copy RFLP markers were used to evaluate the genetic diversity of 122 accessions of common wild rice (CWR, Oryza rufipogon Griff.) and 75 entries of cultivated rice (Oryza sativa L.) from more than ten Asian countries. A comparison of the parameters showing genetic diversity, including the percentage of polymorphic loci (P), the average number of alleles per locus (A), the number of genotypes (Ng), the average heterozygosity (Ho) and the average genetic multiplicity (Hs) of CWR and indica and japonica subspecies of cultivated rice from different countries and regions, indicated that CWR from China possesses the highest genetic diversity, followed by CWR from South Asia and Southeast Asia. The genetic diversity of CWR from India is the second highest. Although the average gene diversity (Hs)of the South Asian CWR is higher than that of the Southeast Asian CWR, its percentage of polymorphic loci (P), number of alleles (Na) and number of genotypes (Ng) are all smaller. It was also found that the genetic diversity of cultivated rice is obviously lower than that of CWR. At the 44 loci investigated, the number of polymorphic loci of cultivated rice is only 3/4 that of CWR, while the number of alleles, 60%, and the number of genotypes is about 1/2 that of CWR. Of the two subspecies studied, the genetic diversity of indica is higher than that of japonica. The average heterozygosity of the Chinese CWR is the highest among all the entries studied. The average heterozygosity of CWR is about two-times that of cultivated rice. It is suggested that during the course of evolution from wild rice to cultivated rice, many alleles were lost through natural and human selection, leading to the lower heterozygosity and genetic diversity of the cultivated rice.
UR - http://www.scopus.com/inward/record.url?scp=0035121402&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0035121402&partnerID=8YFLogxK
U2 - 10.1007/s001220051631
DO - 10.1007/s001220051631
M3 - Article
AN - SCOPUS:0035121402
SN - 0040-5752
VL - 102
SP - 157
EP - 162
JO - Theoretical And Applied Genetics
JF - Theoretical And Applied Genetics
IS - 1
ER -