Complex image processing with less data—Document image binarization by integrating multiple pre-trained U-Net modules

研究成果: Contribution to journalArticle査読

4 被引用数 (Scopus)

抄録

Artificial neural networks have been shown significant performance in various image-to-image conversion tasks. However, complex conversions often require a large number of images for model training. Therefore, we propose a convolutional model for image-to-image conversions using a pipeline of simpler image processing modules. To verify our proposed approach, we use a document image binarization as the task. Document image binarization is an important process that affects the accuracy of document analysis and recognition. In this paper, we propose a novel document binarization method called Cascading Modular U-Nets (CMU-Nets). CMU-Nets consist of pre-trained modular modules useful for overcoming the problem of a shortage of training images. We also propose a novel cascading scheme for improving overall cascading model performance. We verify the proposed model on all available Document Image Binarization Competition (DIBCO) and the Handwritten-DIBCO (H-DIBCO) datasets.

本文言語英語
論文番号107577
ジャーナルPattern Recognition
109
DOI
出版ステータス出版済み - 1 2021

All Science Journal Classification (ASJC) codes

  • ソフトウェア
  • 信号処理
  • コンピュータ ビジョンおよびパターン認識
  • 人工知能

フィンガープリント

「Complex image processing with less data—Document image binarization by integrating multiple pre-trained U-Net modules」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル