Complexity of the minimum single dominating cycle problem for graph classes

Hiroshi Eto, Hiroyuki Kawahara, Eiji Miyano, Natsuki Nonoue

研究成果: Contribution to journalArticle査読

抄録

In this paper, we study a variant of the Minimum Dominating Set problem. Given an unweighted undirected graph G = (V, E) of n = |V| vertices, the goal of the Minimum Single Dominating Cycle problem (MinSDC) is to find a single shortest cycle which dominates all vertices, i.e., a cycle C such that for the set V(C) of vertices in C and the set N(V(C)) of neighbor vertices of C, V(G) = V(C) ∪ N(V(C)) and |V(C)| is minimum over all dominating cycles in G [6], [17], [24]. In this paper we consider the (in)approximability of MinSDC if input graphs are restricted to some special classes of graphs. We first show that MinSDC is still NP-hard to approximate even when restricted to planar, bipartite, chordal, or r-regular (r ≥ 3). Then, we show the (ln n + 1)-approximability and the (1 - ϵ) ln n-inapproximability of MinSDC on split graphs under P ≠ NP. Furthermore, we explicitly design a linear-time algorithm to solve MinSDC for graphs with bounded treewidth and estimate the hidden constant factor of its running time-bound.

本文言語英語
ページ(範囲)574-581
ページ数8
ジャーナルIEICE Transactions on Information and Systems
E101D
3
DOI
出版ステータス出版済み - 3 2018

All Science Journal Classification (ASJC) codes

  • ソフトウェア
  • ハードウェアとアーキテクチャ
  • コンピュータ ビジョンおよびパターン認識
  • 電子工学および電気工学
  • 人工知能

フィンガープリント

「Complexity of the minimum single dominating cycle problem for graph classes」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル