Computation of short-crested deepwater waves

Mansour Ioualalen, M. Okamura, S. Cornier, C. Kharif, A. J. Roberts

研究成果: Contribution to journalArticle査読

13 被引用数 (Scopus)

抄録

Short-crested waves are three-dimensional waves that may be generated through a reflection of a two-dimensional Stokes wave on a seawall. Thus, they are more likely to be observed near ports or any consequent marine structure. Two numerical methods are used to compute three-dimensional surface gravity short-crested waves on deepwater. The first method is an asymptotic procedure and the second computes a direct numerical solution. One of the main properties is the four-wave resonance. Such resonance introduces nonuniqueness with several solution branches connected through a turning point. We show that both computational methods are reliable for nonresonant waves, but that the direct numerical method converges faster. For resonant waves, the direct method is more appropriate because all solution branches can be obtained. The asymptotic method computes only one branch of solutions for any given parameter values, and is uncertain around and past any turning point. Stability analysis of the branches shows that, although sporadic, an instability associated with harmonic resonance is more likely to appear for one branch in the vicinity of the turning point. Consequently this could amplify the unstable resonant mode. The nonuniqueness of the solution requires careful attention in every study on the impact of surface waves on marine structures. It is shown here that the wave force exerted on a seawall may change drastically from one branch of solution to another.

本文言語英語
ページ(範囲)157-165
ページ数9
ジャーナルJournal of Waterway, Port, Coastal and Ocean Engineering
132
3
DOI
出版ステータス出版済み - 5 2006

All Science Journal Classification (ASJC) codes

  • 土木構造工学
  • 水の科学と技術
  • 海洋工学

フィンガープリント

「Computation of short-crested deepwater waves」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル