Computational Analysis of the Interplay between Deep Level Traps and Perovskite Solar Cell Efficiency

Kara Kearney, Gabseok Seo, Toshinori Matsushima, Chihaya Adachi, Elif Ertekin, Angus Rockett

研究成果: ジャーナルへの寄稿学術誌査読

14 被引用数 (Scopus)

抄録

New deposition methods of halide perovskites are being developed with the aim of improving solar cell power conversion efficiency by controlling the physiochemical properties of the perovskite film. In the case of methylammonium lead iodide (MAPbI3), deep level traps limit efficiency by participating in charge carrier recombination. Prior work has shown that the solar cell efficiency of MAPbI3 solar cells varied significantly with deposition method; specifically, efficiencies of 13.5 and 17.7% were observed for MAPbI3 processed with a one- and two-step method, respectively. However, the origin of the difference in efficiency remains unclear. In this study, we analyze the interplay between deep level traps and efficiency by simulating the photoexcited charge carrier pathway across solar cells processed via the one- and two-step method using finite-element drift-diffusion modeling. We determined that in the case of one-step processing, the traps propagate throughout the bulk, while for two-step, the traps congregate at the interface where the MAPbI3 was grown (mesoporous TiO2). Composition and structural analysis are used to propose a plausible explanation as to why the difference in processing changes the spatial distribution of the traps.

本文言語英語
ページ(範囲)15655-15660
ページ数6
ジャーナルJournal of the American Chemical Society
140
46
DOI
出版ステータス出版済み - 11月 21 2018

!!!All Science Journal Classification (ASJC) codes

  • 触媒
  • 化学 (全般)
  • 生化学
  • コロイド化学および表面化学

フィンガープリント

「Computational Analysis of the Interplay between Deep Level Traps and Perovskite Solar Cell Efficiency」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル