Computational Analysis of the Interplay between Deep Level Traps and Perovskite Solar Cell Efficiency

Kara Kearney, Gabseok Seo, Toshinori Matsushima, Chihaya Adachi, Elif Ertekin, Angus Rockett

研究成果: ジャーナルへの寄稿記事

1 引用 (Scopus)

抜粋

New deposition methods of halide perovskites are being developed with the aim of improving solar cell power conversion efficiency by controlling the physiochemical properties of the perovskite film. In the case of methylammonium lead iodide (MAPbI3), deep level traps limit efficiency by participating in charge carrier recombination. Prior work has shown that the solar cell efficiency of MAPbI3 solar cells varied significantly with deposition method; specifically, efficiencies of 13.5 and 17.7% were observed for MAPbI3 processed with a one- and two-step method, respectively. However, the origin of the difference in efficiency remains unclear. In this study, we analyze the interplay between deep level traps and efficiency by simulating the photoexcited charge carrier pathway across solar cells processed via the one- and two-step method using finite-element drift-diffusion modeling. We determined that in the case of one-step processing, the traps propagate throughout the bulk, while for two-step, the traps congregate at the interface where the MAPbI3 was grown (mesoporous TiO2). Composition and structural analysis are used to propose a plausible explanation as to why the difference in processing changes the spatial distribution of the traps.

元の言語英語
ページ(範囲)15655-15660
ページ数6
ジャーナルJournal of the American Chemical Society
140
発行部数46
DOI
出版物ステータス出版済み - 11 21 2018

All Science Journal Classification (ASJC) codes

  • Catalysis
  • Chemistry(all)
  • Biochemistry
  • Colloid and Surface Chemistry

フィンガープリント Computational Analysis of the Interplay between Deep Level Traps and Perovskite Solar Cell Efficiency' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用