Computational complexity of three-dimensional discrete tomography with missing data

Kei Kimura, Takuya Kamehashi

研究成果: Contribution to journalArticle査読

抄録

Discrete tomography deals with problems of determining shape of a discrete object from a set of projections. In this paper, we deal with a fundamental problem in discreet tomography: reconstructing a discrete object in R3 from its orthogonal projections, which we call three-dimensional discrete tomography. This problem has been mostly studied under the assumption that complete data of the projections are available. However, in practice, there might be missing data in the projections, which come from, e.g., the lack of precision in the measurements. In this paper, we consider the three-dimensional discrete tomography with missing data. Specifically, we consider the following three fundamental problems in discrete tomography: the consistency, counting, and uniqueness problems, and classify the computational complexities of these problems in terms of the length of one dimension. We also generalize these results to higher-dimensional discrete tomography, which has applications in operations research and statistics.

本文言語英語
ページ(範囲)823-858
ページ数36
ジャーナルJapan Journal of Industrial and Applied Mathematics
38
3
DOI
出版ステータス出版済み - 9 2021
外部発表はい

All Science Journal Classification (ASJC) codes

  • 工学(全般)
  • 応用数学

フィンガープリント

「Computational complexity of three-dimensional discrete tomography with missing data」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル